Геометрической прогрессии равна 8184. Геометрическая прогрессия

Например , последовательность \(3\); \(6\); \(12\); \(24\); \(48\)… является геометрической прогрессией, потому что каждый следующий элемент отличается от предыдущего в два раза (иначе говоря, может быть получен из предыдущего умножением его на два):

Как и любую последовательность, геометрическую прогрессию обозначают маленькой латинской буквой. Числа, образующие прогрессию, называют ее членами (или элементами). Их обозначают той же буквой, что и геометрическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.

Например , геометрическая прогрессия \(b_n = \{3; 6; 12; 24; 48…\}\) состоит из элементов \(b_1=3\); \(b_2=6\); \(b_3=12\) и так далее. Иными словами:

Если вы поняли вышеизложенную информацию, то уже сможете решить большинство задач на эту тему.

Пример (ОГЭ):
Решение:

Ответ : \(-686\).

Пример (ОГЭ): Даны первые три члена прогрессии \(324\); \(-108\); \(36\)…. Найдите \(b_5\).
Решение:


Чтобы продолжить последовательность, нам нужно знать знаменатель. Найдем его из двух соседних элементов: на что нужно умножить \(324\), чтоб получилось \(-108\)?

\(324·q=-108\)

Отсюда без проблем вычисляем знаменатель.

\(q=-\) \(\frac{108}{324}\) \(=-\) \(\frac{1}{3}\)

Теперь мы легко находим нужный нам элемент.


Готов ответ.

Ответ : \(4\).

Пример: Прогрессия задана условием \(b_n=0,8·5^n\). Какое из чисел является членом этой прогрессии:

а) \(-5\) б) \(100\) в) \(25\) г) \(0,8\) ?

Решение: Из формулировки задания очевидно, что одно из этих чисел точно есть в нашей прогрессии. Поэтому мы можем просто вычислять ее члены по очереди, пока не найдем нужное нам значение. Так как у нас прогрессия задана формулой , то вычисляем значения элементов, подставляя разные \(n\):
\(n=1\); \(b_1=0,8·5^1=0,8·5=4\) – такого числа в списке нет. Продолжаем.
\(n=2\); \(b_2=0,8·5^2=0,8·25=20\) – и этого тоже нет.
\(n=3\); \(b_3=0,8·5^3=0,8·125=100\) – а вот и наш чемпион!

Ответ: \(100\).

Пример (ОГЭ): Даны несколько идущих последовательно друг за другом членов геометрической прогрессии …\(8\); \(x\); \(50\); \(-125\)…. Найдите значение элемента, обозначенного буквой \(x\).

Решение:

Ответ: \(-20\).

Пример (ОГЭ): Прогрессия задана условиями \(b_1=7\), \(b_{n+1}=2b_n\). Найдите сумму первых \(4\) членов этой прогрессии.

Решение:

Ответ: \(105\).

Пример (ОГЭ): Известно, что в геометрической прогрессии \(b_6=-11\), \(b_9=704\). Найдите знаменатель \(q\).

Решение:


Из схемы слева видно, что чтобы «попасть» из \(b_6\) в \(b_9\) – мы делаем три «шага», то есть три раза умножаем \(b_6\) на знаменатель прогрессии. Иными словами \(b_9=b_6·q·q·q=b_6·q^3\).

\(b_9=b_6·q^3\)

Подставим известные нам значения.

\(704=(-11)·q^3\)

«Перевернем» уравнение и разделим его на \((-11)\).

\(q^3=\) \(\frac{704}{-11}\) \(\:\:\: ⇔ \:\:\: \)\(q^3=-\) \(64\)

Какое число в кубе даст \(-64\)?
Конечно, \(-4\)!

Ответ найден. Его можно проверить, восстановив цепочку чисел от \(-11\) до \(704\).


Все сошлось - ответ верен.

Ответ: \(-4\).

Важнейшие формулы

Как видите, большинство задач на геометрическую прогрессию можно решать чистой логикой, просто понимая суть (это вообще характерно для математики). Но иногда знание некоторых формул и закономерностей ускоряет и существенно облегчает решение. Мы изучим две такие формулы.

Формула \(n\)-го члена: \(b_n=b_1·q^{n-1}\), где \(b_1\) – первый член прогрессии; \(n\) – номер искомого элемента; \(q\) – знаменатель прогрессии; \(b_n\) – член прогрессии с номером \(n\).

С помощью этой формулы можно, например, решить задачу из самого первого примера буквально в одно действие.

Пример (ОГЭ): Геометрическая прогрессия задана условиями \(b_1=-2\); \(q=7\). Найдите \(b_4\).
Решение:

Ответ: \(-686\).

Этот пример был простым, поэтому формула нам облегчила вычисления не слишком сильно. Давайте разберем задачку чуть посложнее.

Пример: Геометрическая прогрессия задана условиями \(b_1=20480\); \(q=\frac{1}{2}\). Найдите \(b_{12}\).
Решение:

Ответ: \(10\).

Конечно, возводить \(\frac{1}{2}\) в \(11\)-ую степень не слишком радостно, но всё же проще чем \(11\) раз делить \(20480\) на два.

Сумма \(n\) первых членов: \(S_n=\)\(\frac{b_1·(q^n-1)}{q-1}\) , где \(b_1\) – первый член прогрессии; \(n\) – количество суммируемых элементов; \(q\) – знаменатель прогрессии; \(S_n\) – сумма \(n\) первых членов прогрессии.

Пример (ОГЭ): Дана геометрическая прогрессия \(b_n\), знаменатель которой равен \(5\), а первый член \(b_1=\frac{2}{5}\). Найдите сумму первых шести членов этой прогрессии.
Решение:

Ответ: \(1562,4\).

И вновь мы могли решить задачу «в лоб» – найти по очереди все шесть элементов, а затем сложить результаты. Однако количество вычислений, а значит и шанс случайной ошибки, резко возросли бы.

Для геометрической прогрессии есть еще несколько формул, которые мы не стали рассматривать тут из-за их низкой практической пользы. Вы можете найти эти формулы .

Возрастающие и убывающие геометрические прогрессии

У рассмотренной в самом начале статьи прогрессии \(b_n = \{3; 6; 12; 24; 48…\}\) знаменатель \(q\) больше единицы и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими .

Если же \(q\) меньше единицы, но при этом положителен (то есть, лежит в пределах от нуля до единицы), то каждый следующий элемент будет меньше чем предыдущий. Например, в прогрессии \(4\); \(2\); \(1\); \(0,5\); \(0,25\)… знаменатель \(q\) равен \(\frac{1}{2}\).


Эти прогрессии называются убывающими . Обратите внимание, что ни один из элементов такой прогрессии не будет отрицателен, они просто становятся всё меньше и меньше с каждым шагом. То есть, мы будем постепенно приближаться к нулю, но никогда его не достигнем и за него не перейдем. Математики в таких случаях говорят «стремиться к нулю».

Отметим, что при отрицательном знаменателе элементы геометрической прогрессии будут обязательно менять знак. Например , у прогрессии \(5\); \(-15\); \(45\); \(-135\); \(675\)… знаменатель \(q\) равен \(-3\), и из-за этого знаки элементов «мигают».

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ l48. Сумма бесконечно убывающей геометрической прогрессии

До сих пор, говоря о суммах, мы всегда предполагали, что число слагаемых в этих суммах конечно (например, 2, 15, 1000 и т. д.). Но при решении некоторых задач (особенно высшей математики) приходится сталкиваться и с суммами бесконечного числа слагаемых

S = a 1 + a 2 + ... + a n + ... . (1)

Что же представляют из себя такие суммы? По определению суммой бесконечного числа слагаемых a 1 , a 2 , ..., a n , ... называется предел суммы S n первых п чисел, когда п -> :

S = S n = (a 1 + a 2 + ... + a n ). (2)

Предел (2), конечно, может существовать, а может и не существовать. Соответственно этому говорят, что сумма (1) существует или не существует.

Как же выяснить, существует ли сумма (1) в каждом конкретном случае? Общее решение этого вопроса выходит далеко за пределы нашей программы. Однако существует один важный частный случай, который нам предстоит сейчас рассмотреть. Речь будет идти о суммировании членов бесконечно убывающей геометрической прогрессии.

Пусть a 1 , a 1 q , a 1 q 2 , ...- бесконечно убывающая геометрическая прогрессия. Это означает, что | q |< 1. Сумма первых п членов этой прогрессии равна

Из основных теорем о пределах переменных величин (см. § 136) получаем:

Но 1 = 1, a q n = 0. Поэтому

Итак, сумма бесконечно убывающей геометрической прогрессии равна первому члену этой прогрести, деленному на единицу минус знаменатель этой прогрессии.

1) Сумма геометрической прогрессии 1, 1 / 3 , 1 / 9 , 1 / 27 , ... равна

а сумма геометрической прогрессии 12; -6; 3; - 3 / 2 , ... равна

2) Простую периодическую дробь 0,454545 ... обратить в обыкновенную.

Для решения этой задачи представим данную дробь в виде бесконечной суммы:

Правая часть этого равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, первый член которой равен 45 / 100 , а знаменатель 1 / 100 . Поэтому

Описанным способом может быть получено и общее правило обращения простых периодических дробей в обыкновенные (см. гл. II, § 38):

Для обращения простой периодической дроби в обыкновенную нужно поступить следующим образом: в числителе поставить период десятичной дроби, а в знаменателе - число, состоящее из девяток, взятых столько раз, сколько знаков в периоде десятичной дроби.

3) Смешанную периодическую дробь 0,58333 .... обратить в обыкновенную.

Представим данную дробь в виде бесконечной суммы:

В правой части этого равенства все слагаемые, начиная с 3 / 1000 , образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен 3 / 1000 , а знаменатель 1 / 10 . Поэтому

Описанным способом может быть получено и общее правило обращения смешанных периодических дробей в обыкновенные (см. гл. II, § 38). Мы сознательно не приводим его здесь. Запоминать это громоздкое правило нет необходимости. Гораздо полезнее знать, что любую смешанную периодическую дробь можно представить в виде суммы бесконечно убывающей геометрической прогрессии и некоторого числа. А формулу

для суммы бесконечно убывающей геометрической прогрессии нужно, конечно, помнить.

В качестве упражнения предлагаем вам, помимо приведенных ниже задач № 995-1000, еще раз обратиться к задаче № 301 § 38 .

Упражнения

995. Что называется суммой бесконечно убывающей геометрической прогрессии?

996. Найти суммы бесконечно убывающих геометрических прогрессий:

997. При каких значениях х прогрессия

является бесконечно убывающей? Найти сумму такой прогрессии.

998. В равносторонний треугольник со стороной а вписан посредством соединения середин его сторон новый треугольник; в этот треугольник тем же способом вписан новый треугольник и так далее до бесконечности.

а) сумму периметров всех этих треугольников;

б) сумму их площадей.

999. В квадрат со стороной а вписан путем соединения середин его сторон новый квадрат; в этот квадрат таким же образом вписан квадрат и так далее до бесконечности. Найти сумму периметров всех этих квадратов и сумму их площадей.

1000. Составить бесконечно убывающую геометрическую прогрессию, такую, чтобы сумма ее равнялась 25 / 4 , а сумма квадратов ее членов равнялась 625 / 24 .

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».

Рассмотрим некоторый ряд.

7 28 112 448 1792...

Совершенно ясно видно, что значение любого его элемента больше предыдущего ровно в четыре раза. Значит, данный ряд является прогрессией.

Геометрической прогрессиейименуется бесконечная последовательность чисел, главной особенностью которой является то, что следующее число получается из предыдущего посредством умножения на какое-то определенное число. Это выражается следующей формулой.

a z +1 =a z ·q, где z - номер выбранного элемента.

Соответственно, z ∈ N.

Период, когда в школе изучается геометрическая прогрессия - 9 класс. Примеры помогут разобраться в понятии:

0.25 0.125 0.0625...

Исходя из этой формулы, знаменатель прогрессии возможно найти следующим образом:

Ни q, ни b z не могут равняться нулю. Так же каждый из элементов прогрессии не должен равняться нулю.

Соответственно, чтобы узнать следующее число ряда, нужно умножить последнее на q.

Чтобы задать данную прогрессию, необходимо указать первый ее элемент и знаменатель. После этого возможно нахождение любого из последующих членов и их суммы.

Разновидности

В зависимости от q и a 1, данная прогрессия разделяется на несколько видов:

  • Если и a 1 , и q больше единицы, то такая последовательность - возрастающая с каждым следующим элементом геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =3, q=2 - оба параметра больше единицы.

Тогда числовая последовательность может быть записана так:

3 6 12 24 48 ...

  • Если |q| меньше единицы, то есть, умножение на него эквивалентно делению, то прогрессия с подобными условиями - убывающая геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =6, q=1/3 - a 1 больше единицы, q - меньше.

Тогда числовую последовательность можно записать таким образом:

6 2 2/3 ... - любой элемент больше элемента, следующего за ним, в 3 раза.

  • Знакопеременная. Если q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3 , q = -2 - оба параметра меньше нуля.

Тогда числовую последовательность можно записать так:

3, 6, -12, 24,...

Формулы

Для удобного использования геометрических прогрессий существует множество формул:

  • Формула z-го члена. Позволяет рассчитать элемент, стоящий под конкретным номером без расчета предыдущих чисел.

Пример: q = 3, a 1 = 4. Требуется посчитать четвертый элемент прогрессии.

Решение: a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумма первых элементов, чье количество равно z . Позволяет рассчитать сумму всех элементов последовательности до a z включительно.

Так как (1- q ) стоит в знаменателе, то (1 - q) ≠ 0, следовательно, q не равно 1.

Замечание: если бы q=1, то прогрессия представляла бы собой ряд из бесконечно повторяющегося числа.

Сумма геометрической прогрессии, примеры: a 1 = 2, q = -2. Посчитать S 5 .

Решение: S 5 = 22 - расчет по формуле.

  • Сумма, если | q | < 1 и если z стремится к бесконечности.

Пример: a 1 = 2 , q = 0.5. Найти сумму.

Решение: S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Некоторые свойства:

  • Характеристическое свойство. Если следующее условие выполняется для любого z , то заданный числовой ряд - геометрическая прогрессия:

a z 2 = a z -1 · a z+1

  • Так же квадрат любого числа геометрической прогрессии находится при помощи сложения квадратов двух других любых чисел в заданном ряду, если они равноудалены от этого элемента.

a z 2 = a z - t 2 + a z + t 2 , где t - расстояние между этими числами.

  • Элементы различаются в q раз.
  • Логарифмы элементов прогрессии так же образуют прогрессию, но уже арифметическую, то есть каждый из них больше предыдущего на определенное число.

Примеры некоторых классических задач

Чтобы лучше понять, что такое геометрическая прогрессия, примеры с решением для 9 класса могут помочь.

  • Условия: a 1 = 3, a 3 = 48. Найти q .

Решение: каждый последующий элемент больше предыдущего в q раз. Необходимо выразить одни элементы через другие с помощью знаменателя.

Следовательно, a 3 = q 2 · a 1

При подстановке q = 4

  • Условия: a 2 = 6, a 3 = 12. Рассчитать S 6 .

Решение: Для этого достаточно найти q, первый элемент и подставить в формулу.

a 3 = q · a 2 , следовательно, q = 2

a 2 = q · a 1 , поэтому a 1 = 3

S 6 = 189

  • · a 1 = 10, q = -2. Найти четвертый элемент прогрессии.

Решение: для этого достаточно выразить четвертый элемент через первый и через знаменатель.

a 4 = q 3 · a 1 = -80

Пример применения:

  • Клиент банка совершил вклад на сумму 10000 рублей, по условиям которого каждый год клиенту к основной сумме будут прибавляться 6% от нее же. Сколько средств будет на счету через 4 года?

Решение: Изначальная сумма равна 10 тысячам рублей. Значит, через год после вложения на счету будет сумма, равная 10000 + 10000· 0.06 = 10000 · 1.06

Соответственно, сумма на счете еще через один год будет выражаться следующим образом:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

То есть с каждым годом сумма увеличивается в 1.06 раз. Значит, чтобы найти количество средств на счете через 4 года, достаточно найти четвертый элемент прогрессии, которая задана первым элементом, равным 10 тысячам, и знаменателем, равным 1.06.

S = 1.06·1.06·1.06·1.06·10000 = 12625

Примеры задач на вычисление суммы:

В различных задачах используется геометрическая прогрессия. Пример на нахождение суммы может быть задан следующим образом:

a 1 = 4, q = 2, рассчитать S 5 .

Решение: все необходимые для расчета данные известны, нужно просто подставить их в формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Рассчитать сумму первых шести элементов.

Решение:

В геом. прогрессии каждый следующий элемент больше предыдущего в q раз, то есть для вычисления суммы необходимо знать элемент a 1 и знаменатель q .

a 2 · q = a 3

q = 3

Аналогичным образом требуется найти a 1 , зная a 2 и q .

a 1 · q = a 2

a 1 = 2

S 6 = 728.

Рассмотрим теперь вопрос о суммировании бесконечной геометрической прогрессии. Назовем частичной суммой данной бесконечной прогрессии сумму ее первых членов. Обозначим частичную сумму символом

Для каждой бесконечной прогрессии

можно составить (также бесконечную) последовательность ее частичных сумм

Пусть последовательность при неограниченном возрастании имеет предел

В этом случае число S, т. е. предел частичных сумм прогрессии, называют суммой бесконечной прогрессии. Мы докажем, что бесконечная убывающая геометрическая прогрессия всегда имеет сумму, и выведем формулу для этой суммы (можно также показать, что при бесконечная прогрессия не имеет суммы, не существует).

Запишем выражение частичной суммы как суммы членов прогрессии по формуле (91.1) и будем рассматривать предел частичной суммы при

Из теоремы п. 89 известно, что для убывающей прогрессии ; поэтому, применяя теорему о пределе разности, найдем

(здесь также использовано правило: постоянный множитель выносится за знак предела). Существование доказано, и одновременно получена формула суммы бесконечно убывающей геометрической прогрессии:

Равенство (92.1) можно также писать в виде

Здесь может казаться парадоксальным, что сумме бесконечного множества слагаемых приписывается вполне определенное конечное значение.

Можно привести наглядную иллюстрацию в пояснение такого положения. Рассмотрим квадрат со стороной, равной единице (рис. 72). Разделим этот квадрат горизонтальной линией на две равные части и верхнюю часть приложим к нижней так, чтобы образовался прямоугольник со сторонами 2 и . После этого правую половину этого прямоугольника снова разделим горизонтальной линией пополам и верхнюю часть приложим к нижней (как показано на рис. 72). Продолжая этот процесс, мы все время преобразуем исходный квадрат с площадью, равной 1, в равновеликие фигуры (принимающие вид лестницы с утоньшающимися ступеньками).

При бесконечном продолжении этого процесса вся площадь квадрата разлагается в бесконечное чьсло слагаемых - площадей прямоугольников с основаниями, равными 1, и высотами Площади прямоугольников как раз образуют при этом бесконечную убывающую прогрессию ее сумма

т. е., как и следовало ожидать, равна площади квадрата.

Пример. Найти суммы следующих бесконечных прогрессий:

Решение, а) Замечаем, что у этой прогрессии Поэтому по формуле (92.2) находим

б) Здесь значит, по той же формуле (92.2) имеем

в) Находим, что у этой прогрессии Поэтому данная прогрессия не имеет суммы.

В п. 5 было показано применение формулы суммы членов бесконечно убывающей прогрессии к обращению периодической десятичной дроби в обыкновенную дробь.

Упражнения

1. Сумма бесконечно убывающей геометрической прогрессии равна 3/5, а сумма ее первых четырех членов равна 13/27. Найти первый член и знаменатель прогрессии.

2. Найти четыре числа, образующие знакочередующуюся геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

3. Показать, что если последовательность

образует бесконечно убывающую геометрическую прогрессию, то и последовательность

при любом образует бесконечно убывающую геометрическую прогрессию. Сохранится ли это утверждение при

Вывести формулу для произведения членов геометрической прогрессии.