Примеры иллюстрирующие относительность движения. Относительность механического движения

Слова «тело движется» не имеют определенного смысла, так как нужно сказать, по отношению к каким телам или относительно какой системы отсчета это движение рассматривается. Приведем несколько примеров.

Пассажиры движущегося поезда неподвижны относительно стен вагона. И те же пассажиры движутся в системе отсчета, связанной с Землей. Поднимается лифт. Стоящий на его полу чемодан покоится относительно стен лифта и человека, находящегося в лифте. Но он движется относительно Земли и дома.

Эти примеры доказывают относительность движения и, в частности, относительность понятия скорости. Скорость одного и того же тела различна в разных системах отсчета.

Представьте себе пассажира в движущемся равномерно относительно поверхности Земли вагоне, выпускающего из рук мяч. Он видит, как мяч падает относительно вагона вертикально вниз с ускорением g . Свяжем с вагоном систему координат X 1 О 1 Y 1 (рис. 1). В этой системе координат за время падения мяч пройдет путь AD = h , и пассажир отметит, что мяч упал вертикально вниз и в момент удара о пол его скорость υ 1 .

Рис. 1

Ну а что увидит наблюдатель, стоящий на неподвижной платформе, с которой связана система координат XOY ? Он заметит (представим себе, что стены вагона прозрачны), что траекторией мяча является парабола AD , и мяч упал на пол со скоростью υ 2 , направленной под углом к горизонту (см. рис. 1).

Итак, мы отмечаем, что наблюдатели в системах координат X 1 О 1 Y 1 и XOY обнаруживают различные по форме траектории, скорости и пройденные пути при движении одного тела - мяча.

Надо отчетливо представлять себе, что все кинематические понятия: траектория, координаты, путь, перемещение, скорость имеют определенную форму или численные значения в одной выбранной системе отсчета. При переходе от одной системы отсчета к другой указанные величины могут измениться . В этом и состоит относительность движения, и в этом смысле механическое движение всегда относительно.

Связь координат точки в системах отсчета, движущихся друг относительно друга, описывается преобразованиями Галилея . Преобразования всех других кинематических величин являются их следствиями.

Пример . Человек идет по плоту, плывущему по реке. Известны и скорость человека относительно плота, и скорость плота относительно берега .

В примере идет речь о скорости человека относительно плота и скорости плота относительно берега. Поэтому одну систему отсчета K свяжем с берегом - это неподвижная система отсчета , вторую К 1 свяжем с плотом - это подвижная система отсчета . Введем обозначения скоростей:

  • 1 вариант (скорость относительно систем)

υ - скорость К

υ 1 - скорость этого же тела относительно подвижной системы отсчета K

u - скорость подвижной системы К К

$\vec{\upsilon }=\vec{u}+\vec{\upsilon }_{1} .\; \; \; (1)$

  • ”2 вариант

υ тон - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ топ - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ с - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} .\; \; \; (2)$

  • 3 вариант

υ а (абсолютная скорость ) - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ от (относительная скорость ) - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ п (переносная скорость ) - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{n} .\; \; \; (3)$

  • 4 вариант

υ 1 или υ чел - скорость первого тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ 2 или υ пл - скорость второго тела относительно неподвижной системы отсчета К (скорость плота относительно Земли);

υ 1/2 или υ чел/пл - скорость первого тела относительно второго (скорость человека относительно плота );

υ 2/1 или υ пл/чел - скорость второго тела относительно первого (скорость плота относительно человека ). Тогда

$\left|\begin{array}{c} {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \vec{\upsilon }_{2} =\vec{\upsilon }_{1} +\vec{\upsilon }_{2/1} ;} \\ {} \\ {\vec{\upsilon }_{чел} =\vec{\upsilon }_{пл} +\vec{\upsilon }_{чел/пл} ,\; \; \, \, \vec{\upsilon }_{пл} =\vec{\upsilon }_{чел} +\vec{\upsilon }_{пл/чел} .} \end{array}\right. \; \; \; (4)$

Формулы (1-4) можно записать и для перемещений Δr , и для ускорений a :

$\begin{array}{c} {\Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{п}_{?} ,} \\ {} \\ {\Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} ,\; \; \, \, \Delta \vec{r}_{2} =\Delta \vec{r}_{1} +\Delta \vec{r}_{2/1} ;} \\ {} \\ {\vec{a}_{тон} =\vec{a}_{c} +\vec{a}_{топ} ,\; \; \; \vec{a}_{a} =\vec{a}_{от} +\vec{a}_{п} ,} \\ {} \\ {\vec{a}_{1} =\vec{a}_{2} +\vec{a}_{1/2} ,\; \; \, \, \vec{a}_{2} =\vec{a}_{1} +\vec{a}_{2/1} .} \end{array}$

План решения задач на относительность движения

1. Сделайте чертеж: тела изобразите в виде прямоугольников , над ними укажите направления скоростей и перемещений (если они нужны). Выберите направления осей координат.

2. Исходя из условия задачи или по ходу решения, определитесь с выбором подвижной системы отсчета (СО) и с обозначениями скоростей и перемещений.

  • Всегда начинайте с выбора подвижной СО. Если в задаче нет специальных оговорок, относительно какой СО заданы (или нужно найти) скорости и перемещения, то не принципиально, какую систему принять за подвижную СО. Удачный выбор подвижной системы существенно упрощает решение задачи.
  • Обратите внимание на то, чтобы одна и та же скорость (перемещение) обозначалась одинаково в условии, решении и на рисунке.

3. Запишите закон сложения скоростей и (или) перемещений в векторном виде:

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} ,\; \; \, \, \Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} .$

  • Не забывайте и про другие варианты записи закона сложения:
$\begin{array}{c} {\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{п} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{r}_{п} ,} \\ {} \\ {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} .} \end{array}$

4. Запишите проекции закона сложения на оси 0Х и 0Y (и другие оси)

0Х : υ тон x = υ с x + υ топ x , Δr тон x = Δr с x + Δr топ x , (5-6)

0Y : υ тон y = υ с y + υ топ y , Δr тон y = Δr с y + Δr топ y , (7-8)

  • Другие варианты:
0Х : υ a x = υ от x + υ п x , Δr а x = Δr от x + Δr п x ,

υ 1x = υ 2x + υ 1/2x , Δr 1x = Δr 2x + Δr 1/2x ,

0Y : υ a y = υ от y + υ п y , Δr а y = Δr от y + Δr п y ,

υ 1y = υ 2y + υ 1/2y , Δr 1y = Δr 2y + Δr 1/2y .

5. Найдите значения проекций каждой величины:

υ тон x = …, υ с x = …, υ топ x = …, Δr тон x = …, Δr с x = …, Δr топ x = …,

υ тон y = …, υ с y = …, υ топ y = …, Δr тон y = …, Δr с y = …, Δr топ y = …

  • Аналогично для других вариантов.

6. Подставьте полученные значения в уравнения (5) - (8).

7. Решите полученную систему уравнений.

  • Примечание . По мере наработки навыка решения таких задач, пункты 4 и 5 можно будет делать в уме, без записи в тетрадь.

Дополнения

  1. Если заданы скорости тел относительно тел, которые сейчас неподвижны, но могут двигаться (например, скорость тела в озере (нет течения) или в безветренную погоду), то такие скорости считают заданными относительно подвижной системы (относительно воды или ветра). Это собственные скорости тел, относительно неподвижной системы они могут меняться. Например, собственная скорость человека 5 км/ч. Но если человек идет против ветра, его скорость относительно земли станет меньше; если ветер дует в спину, скорость человека будет больше. Но относительно воздуха (ветра) его скорость остается равной 5 км/ч.
  2. В задачах обычно фразу «скорость тела относительно земли» (или относительно любого другого неподвижного тела), по умолчанию, заменяют на «скорость тела». Если скорость тела задана не относительно земли, то это должно быть указано в условии задачи. Например, 1) скорость самолета 700 км/ч, 2) скорость самолета в безветренную погоду 750 км/ч. В примере один, скорость 700 км/ч задана относительно земли, во втором - скорость 750 км/ч задана относительно воздуха (см. дополнение 1).
  3. В формулах, в которые входят величины с индексами, должен выполняться принцип соответствия , т.е. индексы соответствующих величин должны совпадать. Например, $t=\dfrac{\Delta r_{тон x} }{\upsilon _{тон x}} =\dfrac{\Delta r_{c x}}{\upsilon _{c x}} =\dfrac{\Delta r_{топ x}}{\upsilon _{топ x}}$.
  4. Перемещение при прямолинейном движении направлено в ту же сторону, что и скорость, поэтому знаки проекций перемещения и скорости относительно одной и той же системы отсчета совпадают.

Если в спокойную погоду проснувшийся в каюте парусной яхты пассажир выглянет в иллюминатор, он далеко не сразу сообразит – плывет корабль или лежит в дрейфе. За толстым стеклом однообразная морская гладь, выше – небесная синь с неподвижными облачками. Однако, в любом случае яхта будет находиться в движении. И больше того – сразу в нескольких движениях по отношению к разным системам отсчета. Даже не беря во внимание космические масштабы, этот человек, находясь в состоянии покоя относительно корпуса яхты, оказывается в состоянии движения относительно окружающей его массы воды. Это можно увидеть по кильватерной струе. Но и в случае, если яхта дрейфует со спущенным парусом, она движется с водным потоком, образующим морское течение.

Таким образом, любое тело, находящееся в состоянии покоя относительно одного тела (системы отсчета), одновременно находится в состоянии движения относительно другого тела (другой системы отсчета).

Принцип относительности Галилея

Об относительности движения задумывались уже средневековые ученые, и в эпоху Возрождения эти идеи получили свое дальнейшее развитие. «Почему мы не ощущаем вращения Земли?» – задавались вопросом мыслители. Четкую формулировку на основе физических законов принципу относительности придал Галилео Галилей. «Для предметов, захваченных равномерным движением, – вывел ученый, – это последнее как бы не существует и проявляет свое действие только на вещах, не принимающих в нем участия». Правда, это утверждение действительно только в рамках законов классической механики.

Относительность пути, траектории и скорости

Пройденный путь, траектория и скорость тела или точки будут также относительны в зависимости от выбранной системы отсчета. Возьмите пример с идущим через вагоны человеком. Его путь за определенный промежуток времени относительно состава будет равен пройденному им собственными ногами расстоянию. Путь же будет складываться из расстояния, которое проехал , и непосредственно пройденного человеком расстояния, причем, независимо от того, в какую сторону он шел. То же со скоростью. Но здесь скорость движения человека относительно земли будет выше скорости движения – если человек идет по движению поезда, и ниже – если он идет в обратную движению сторону.

Относительность траектории точки удобно проследить на примере гаечки, закрепленной на ободе велосипедного колеса и удерживающей спицу. Относительно обода она будет неподвижна. Относительно корпуса велосипеда – это будет траектория окружности. А относительно земли траектория этой точки будет представлять непрерывную собой цепь полуокружностей.

Можно ли быть неподвижным и при этом двигаться быстрее автомобиля Формулы 1? Оказывается, можно. Любое движение зависит от выбора системы отсчета, то есть любое движение относительно. Тема сегодняшнего урока: «Относительность движения. Закон сложения перемещений и скоростей». Мы узнаем, как выбрать систему отсчета в том или ином случае, как при этом найти перемещение и скорость тела.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета - совокупность системы координат и часов, связанных с телом, относительно которого изучается движение. Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона (рис. 1).

Рис. 1. Выбор системы отсчета

Какие же физические величины и понятия зависят от выбора системы отсчета?

1. Положение или координаты тела

Рассмотрим произвольную точку . В различных системах она имеет разные координаты (рис. 2).

Рис. 2. Координаты точки в разных системах координат

2. Траектория

Рассмотрим траекторию точки, находящейся на пропеллере самолета, в двух системах отсчета: системе отсчета, связанной с пилотом, и системе отсчета, связанной с наблюдателем на Земле. Для пилота данная точка будет совершать круговое вращение (рис. 3).

Рис. 3. Круговое вращение

В то время как для наблюдателя на Земле траекторией данной точки будет винтовая линия (рис. 4). Очевидно, что траектория зависит от выбора системы отсчета.

Рис. 4. Винтовая траектория

Относительность траектории. Траектории движения тела в различных системах отсчета

Рассмотрим, как меняется траектория движения в зависимости от выбора системы отсчета на примере задачи.

Задача

Какой будет траектория точки на конце пропеллера в разных СО?

1. В СО, связанной с летчиком самолета.

2. В СО, связанной с наблюдателем на Земле.

Решение:

1. Относительно самолета ни летчик, ни пропеллер не перемещаются. Для летчика траектория точки будет казаться окружностью (рис. 5).

Рис. 5. Траектория точки относительно летчика

2. Для наблюдателя на Земле точка движется двумя способами: вращаясь и двигаясь вперед. Траектория будет винтовой (рис. 6).

Рис. 6. Траектория точки относительно наблюдателя на Земле

Ответ : 1) окружность; 2) винтовая линия.

На примере данной задачи мы убедились, что траектория - это относительное понятие.

В качестве самостоятельной проверки предлагаем вам решить следующую задачу:

Какой будет траектория точки на конце колеса относительно центра колеса, если это колесо совершает поступательное движение вперед, и относительно точек, находящихся на земле (неподвижный наблюдатель)?

3. Перемещение и путь

Рассмотрим ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег. Перемещение пловца относительно рыбака, сидящего на берегу, и относительно плота будет разным (рис. 7).

Перемещение относительно земли называют абсолютным, а относительно движущегося тела - относительным. Перемещение движущегося тела (плота) относительно неподвижного тела (рыбака) называют переносным.

Рис. 7. Перемещение пловца

Из примера следует, что перемещение и путь являются относительными величинами.

4. Скорость

С помощью предыдущего примера можно легко показать, что скорость тоже относительная величина. Ведь скорость - это отношение перемещения ко времени. Время у нас одно и то же, а перемещение разное. Следовательно, скорость будет разной.

Зависимость характеристик движения от выбора системы отсчета называется относительностью движения .

В истории человечества были и драматичные случаи, связанные как раз с выбором системы отсчета. Казнь Джордано Бруно, отречение Галилео Галилея - все это следствия борьбы между сторонниками геоцентрической системы отсчета и гелиоцентрической системы отсчета. Уж очень сложно было человечеству привыкнуть к мысли о том, что Земля - это вовсе не центр мироздания, а вполне обычная планета. А движение можно рассматривать не только относительно Земли, это движение будет абсолютным и относительно Солнца, звезд или любых других тел. Описывать движение небесных тел в системе отсчета, связанной с Солнцем, намного удобнее и проще, это убедительно показали сначала Кеплер, а потом и Ньютон, который на основании рассмотрения движения Луны вокруг Земли вывел свой знаменитый закон всемирного тяготения.

Если мы говорим, что траектория, путь, перемещение и скорость являются относительными, то есть зависят от выбора системы отсчета, то про время мы этого не говорим. В рамках классической, или Ньютоновой, механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Рассмотрим, как находить перемещение и скорость в одной системе отсчета, если они нам известны в другой системе отсчета.

Рассмотрим предыдущую ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег.

Как же связано перемещение пловца относительно неподвижной СО (связанной с рыбаком) с перемещением относительно подвижной СО (связанной с плотом) (рис. 8)?

Рис. 8. Иллюстрация к задаче

Перемещение в неподвижной системе отсчета мы назвали . Из треугольника векторов следует, что . Теперь перейдем к поиску соотношения между скоростями. Вспомним, что в рамках Ньютоновой механики время является абсолютной величиной (время во всех системах отсчета течет одинаково). Значит, каждое слагаемое из предыдущего равенства можно разделить на время. Получаем:

Это скорость, с которой движется пловец для рыбака;

Это собственная скорость пловца;

Это скорость плота (скорость течения реки).

Задача на закон сложения скоростей

Рассмотрим закон сложения скоростей на примере задачи.

Задача

Два автомобиля движутся навстречу друг другу: первый автомобиль со скоростью , второй - со скоростью . С какой скоростью сближаются автомобили (рис. 9)?

Рис. 9. Иллюстрация к задаче

Решение

Применим закон сложения скоростей. Для этого перейдем от привычной СО, связанной с Землей, к СО, связанной с первым автомобилем. Таким образом, первый автомобиль становится неподвижным, а второй движется к нему со скоростью (относительная скорость). С какой скоростью, если первый автомобиль неподвижен, вращается вокруг первого автомобиля Земля? Она вращается со скоростью и скорость направлена по направлению скорости второго автомобиля (переносная скорость). Два вектора, которые направлены вдоль одной прямой, суммируются. .

Ответ: .

Границы применимости закона сложения скоростей. Закон сложения скоростей в теории относительности

Долгое время считалось, что классический закон сложения скоростей справедлив всегда и применим ко всем системам отсчета. Однако порядка лет назад оказалось, что в некоторых ситуациях данный закон не работает. Рассмотрим такой случай на примере задачи.

Представьте себе, что вы находитесь на космической ракете, которая движется со скоростью . И капитан космической ракеты включает фонарик в направлении движения ракеты (рис. 10). Скорость распространения света в вакууме составляет . Какой же будет скорость света для неподвижного наблюдателя на Земле? Будет ли она равна сумме скоростей света и ракеты?

Рис. 10. Иллюстрация к задаче

Дело в том, что тут физика сталкивается с двумя противоречащими концепциями. С одной стороны, согласно электродинамике Максвелла, максимальная скорость - это скорость света, и она равна . С другой стороны, согласно механике Ньютона, время является абсолютной величиной. Задача решилась, когда Эйнштейн предложил специальную теорию относительности, а точнее ее постулаты. Он первым предположил, что время не является абсолютным. То есть где-то оно течет быстрее, а где-то медленнее. Конечно, в нашем мире небольших скоростей мы не замечаем данный эффект. Для того чтобы почувствовать эту разницу, нам необходимо двигаться со скоростями, близкими к скорости света. На основании заключений Эйнштейна был получен закон сложения скоростей в специальной теории относительности. Он выглядит следующим образом:

Это скорость относительно неподвижной СО;

Это скорость относительно подвижной СО;

Это скорость подвижной СО относительно неподвижной СО.

Если подставить значения из нашей задачи, то получим, что скорость света для неподвижного наблюдателя на Земле будет составлять .

Противоречие было решено. Также можно убедиться, что если скорости очень малы по сравнению со скоростью света, то формула для теории относительности переходит в классическую формулу для сложения скоростей.

В большинстве случаев мы будем пользоваться классическим законом.

Сегодня мы выяснили, что движение зависит от системы отсчета, что скорость, путь, перемещение и траектория - это понятия относительные. А время в рамках классической механики - понятие абсолютное. Научились применять полученные знания, разобрав некоторые типовые примеры.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.ayp.ru ().

Домашнее задание

  1. Дать определение относительности движения.
  2. Какие физические величины зависят от выбора системы отсчета?

Равная векторной разности скоростей, заданных относительно неподвижной системы отсчета.

При изучении механического движения в первую очередь подчеркивается его относительность . При изучении различных свойств движения тела предполагается, что рассматривается абсолютное движение (т. е. движение, отнесенное к неподвижным осям). Во многих случаях возникает необходимость определить относительное движение , отнесенное к системе отсчета, движущейся по отношению к неподвижным осям.

Относительное движение точки по отношению к подвижной системе отсчета может рассматриваться как абсолютное движение, и обладает всеми свойствами абсолютного движения.

Движение можно рассматривать в разных системах отсчета . Выбор системы отчета диктуется удобством: ее нужно выбрать так, чтобы изучаемое движение и его закономерности выглядели по возможности проще. Для перехода от одной системы отсчета к другой необходимо знать, какие характеристики движения изменяются и каким образом, а какие остаются неизменными.

Исходя из опытов можно утверждать, что при рассмотрении движений, происходящих со скоростями, малыми по сравнению со скоростью света, время неизменно во всех системах отсчета, что означает, что при измерении в любой системе отсчета промежуток времени между двумя событиями одинаков.

Что же касается пространственных характеристик, то положение тела изменяется при переходе к другой системе отсчета, однако при этом не меняется пространственное расположение этих двух событий.

Теперь рассмотрим изменение скорости движения тел при переходе от одной системы отсчета к другой, которая движется относительно первой.

Рассмотрим пример переправы на пароме, движущемся поступательно относительно берегов (относительно земли). Вектор перемещения пассажира относительно берегов обозначим через Δr , а относительно парома - через Δr ´. Перемещение парома относительно земли за то же время Δt обозначим через ΔR . В этом случае

Δr = ΔR + Δr´.

Разделим равенство почленно на промежуток времени Δt , в течение которого произошли эти перемещения. Перейдя к пределу Δt >0, получим аналогичное соотношение для скоростей:

υ = V + υ ´

где υ - скорость пассажира относительно земли, V - скорость парома относительно земли, υ ´ - скорость пассажира относительно парома. Этим равенством выражается правило сложения скоростей , которое при одновременном участии тела в двух движениях можно трактовать как закон преобразования скорости тела при переходе от одной системы отсчета к другой. На самом деле, υ и υ ´ - скорости пассажира в двух разных системах отсчета, а V - скорость одной системы (парома) относительно другой (земли).

Из формулы (2) следует, что относительная скорость двух тел одинакова во всех системах отсчета. При переходе к новой системе отсчета к скорости каждого тела прибавляется один и тот же вектор V скорости системы отсчета. Поэтому разность векторов скоростей тел υ - υ ´ не изменяется. Относительная скорость тел абсолютна.

1. Относительность движения состоит в том, что при изучении движения в системах отсчета, движущихся равномерно и прямолинейно относительно принятой неподвижной системы отсчета, все расчеты можно проводить по тем же формулам и уравнениям, как если бы движение подвижной системы отсчета относительно неподвижной отсутствовало.

2. Как в примере с лодкой движутся вода и берег относительно лодки?

2. Представим, что наблюдатель расположился в лодке в точке О’. Проведем через эту точку систему координат X"O"Y". Ось X" направим вдоль берега, ось Y" - перпендикулярно течению реки. Наблюдатель в лодке видит, что берег относительно его системы координат совершает перемещение

двигаясь в направлении противоположном положительному направлению оси

а вода движется относительно лодки совершая перемещение


3. Комбайн, убирающий в поле хлеб, движется относительно земли со скоростью 2,5 км/ч и, не останавливаясь, ссыпает зерно в автомашину. Относительно какого тела отсчета автомашина движется и относительно какого покоится?

3. Относительно комбайна автомашина покоится, а относительно земли движется со скоростью комбайна.