Электрический ток в полупроводниках. Полупроводниковый диод

По значению удельного электрического сопротивления полупроводники занимают промежуточное место между проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Полупроводниками называются вещевтва, удельное сопротивление которых убывает с повышением температуры.

Такой ход зависимости ρ(T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Объяснение явлений, наблюдаемых в проводниках, возможно на основе законов квантовой механики. Рассмотрим качественно механизм электрического тока в полупроводниках на примере германия (Ge).

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , то есть осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.

Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит. При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами.

Вакансии, которые не заняты электронами получили название дырок .

Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар .

В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией .

Рекомбинация – восстановление электронной связи между атомами.

Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p

Электрическим током в полупроводниках называется направленное движение электронов к положительному полюсу, а дырок к отрицательному.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется.

Примесной проводимостью называется проводимость полупроводников при наличии примесей.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

  1. Электронная проводимость возникает, когда в кристалл полупроводника вводится примесь с большей валентностью.

Например, вкристалл германия с четырехвалентными атомами введены пятивалентные атомы мышьяка, As.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался лишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Донорской примесью – называется примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла.

В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p .

Проводимость, при которой основными носителями свободного заряда являются электроны называется электронной.

Полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

  1. Дырочная проводимость возникает, когда в кристалл полупроводника введена примесь с меньшей валентностью.

Например, в кристалл германия введены трехвалентные атомы In.

На рисунке показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.


Акцепторной примесью – называется п римесь из атомов с валентностью меньшей, чем валентность основных атомов полупроводникового кристалла, способных захватывать электроны.

В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n .

Проводимость, при которой основными носителями свободного заряда являются дырки, называется дырочной проводимостью .

Полупроводник с дырочной проводимостью называется полупроводником p-типа .

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Зависимость электропроводимости полупроводников от температуры и освещенности

  1. У полупроводников с ростом температуры подвижность электронов и дырок падает, но это не играет заметной роли, так как при нагревании полупроводника кинетическая энергия валентных электронов возрастает и наступает разрыв отдельных связей, что приводит к увеличению числа свободных электронов, т. е. росту электропроводимости .
  1. При освещении полупроводника в нем появляются дополнительные носите­ли, что приводит к повышению его электропроводности. Это возникает в резуль­тате того, что свет вырывает электроны из атома и при этом одновременно возрастает число электронов и дырок.

На этом уроке мы рассмотрим такую среду прохождения электрического тока, как полупроводники. Мы рассмотрим принцип их проводимости, зависимость этой проводимости от температуры и наличия примесей, рассмотрим такое понятие, как p-n переход и основные полупроводниковые приборы.

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда (рис. 9).

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличие от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается (рис. 10).

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Полупроводниковые приборы

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например, германий.

Одним из таких приборов является диод - прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа (рис. 11).

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами, называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования (рис. 12).

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используется множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Вследствие чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?

Урок № 41-169 Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы.

Полупроводник - вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость увеличивается. Наблюдается у кремния, германия, селена и у некоторых соединений.Механизм проводимости у полупроводников Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик. Если полупроводник чистый(без примесей), то он обладает собственной проводимостью (невелика). Собственная проводимость бывает двух видов: 1)электронная (проводимость "п "-типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; При увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.Свободные электроны перемещаются противоположно вектору напряженности электрического поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов. 2)дырочная (проводимость "р"-типа). При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка". Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.Разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны нагреванием, освещением (фотопроводимость) и действием сильных электрических полей. Зависимость R(t): термистор
- дистанционное измерение t; - противопожарная сигнализация

Общая проводимость чистого полупроводника складывается из проводимостей "р" и "n" -типов и называется электронно-дырочной проводимостью.Полупроводники при наличии примесей У них существует собственная и примесная проводимость. Наличие примесей сильно увеличивает проводимость. При изменении концентрации примесей изменяется число носителей электрического тока - электронов и дырок. Возможность управления током лежит в основе широкого применения полупроводников. Существуют следующие примеси: 1) донорные примеси (отдающие) - являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике. Это проводники " n " - типа, т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки. Такой полупроводник обладает электронной примесной проводимостью (пример – мышьяк). 2) акцепторные примеси (принимающие) создают "дырки", забирая в себя электроны. Это полупроводники " р "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной - электроны. Такой полупроводник обладает дырочной примесной проводимостью (пример – индий). Электрические свойства "р- n " переходов. "р-п" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия, электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего электрического поля ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

При запирающем (обратном направлении внешнего электрического поля) ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковый диод - полупроводник с одним "р-п" переходом. П
олупроводниковые диоды основные элементы выпрямителей переменного тока.

При наложении электрического поля: в одном направлении сопротивление полупроводника велико, в обратном - сопротивление мало.
Транзисторы. (от английских слов transfer - переносить, resistor – сопротивление) Рассмотрим один из видов транзисторов из германия или кремния с введенными в них донорными и акцепторными примесями. Распределе­ние примесей таково, что создает­ся очень тонкая (порядка несколь­ких микрометров) прослойка полупроводника п-типа между дву­мя слоями полупроводника р-типа (см. рис.). Эту тонкую прослойку называют основанием или базой. В кристалле образуются два р -n-перехода, прямые направле­ния которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изо­браженную на рисунке. При данном включении левый р -n-пе­реход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмиттером. Если бы не было правого р -n-перехода, в цепи эмиттер - база су­ществовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и со­противления цепи, включая малое сопротивление прямо­го перехода эмиттер - база. Батарея Б2 включена так, что правый р -n-переход в схеме (см. рис.) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называ­емой коллектором. Если бы не было левого р -n-перехо­да, сила тока в цепи коллектора была бы близка к ну­лю, так каксопротивление обратного перехода очень велико. При существовании же тока в левом р -n-пере­ходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере (если на эмиттер подано отрицательное напряжение, то левый р -n-переход будет обратным и ток в цепи эмиттера и в цепи коллек­тора будет практически отсутствовать). При создании напряжения между эмиттером и базой основные носители полупровод­ника р-типа - дырки проникают в базу, где они явля­ются уже неосновными носителями. Поскольку толщина базы очень мала и число основных носителей (электро­нов) в ней невелико, попавшие в нее дырки почти не объ­единяются (не рекомбинируют) с электронами базы и про­никают в коллектор за счет диффузии. Правый р -n-переход закрыт для основных носителей заряда ба­зы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. выше) плоскости много меньше сечения в верти­кальной плоскости.

Сила тока в коллекторе, практически равная силе то­ка в эмиттере, изменяется вместе с током в эмиттере. Со­противление резистора R мало влияет на ток в коллекто­ре, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника перемен­ного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе R.

При большом сопротивлении резистора изменение напря­жения на нем может в десятки тысяч раз превышать изме­нение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно полу­чить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.

Применение транзисторов Свойства р -п-перехода в полупроводниках использу­ются для усиления и генерации электрических колебаний.



3

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой .

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называютсядонорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.



Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим .

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).



Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.

Полупроводники находят широкое применение в современной электронной технике.

Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах - терморезисторах . Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами .

Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Полупроводниками называют вещества, удельное сопротивление которых во много раз меньше, чем у диэлектриков, о намного больше, чем у металлов. Наиболее широко в качестве полупроводников используют кремний и германий.

Главная особенность полупроводников – зависимость их дельного сопротивления от внешних условий (температуры, освещенности, электрического поля) и от наличия примесей. В 20-м веке ученые и инженеры начали использовать эту особенность полупроводников для создания чрезвычайно миниатюрных сложных приборов с автоматизированным управлением – например, компьютеров, мобильных телефонов, бытовой техники.

Быстродействие компьютеров примерно за полвека их существования увеличилось в миллионы раз. Если бы за этот же промежуток времени скорость автомобилей увеличилась тоже миллионы раз, то они мчались бы сегодня со скоростью, приближающейся к скорости света!

Если бы в одно (далеко не прекрасное!) мгновение полупроводники «отказались от работы», то сразу погасли бы экраны компьютеров и телевизоров, замолчали бы мобильные телефоны, а искусственные спутники потеряли бы управление. Остановились бы тысячи производств, потерпели бы аварии самолеты и корабли, а также миллионы автомобилей.

Носители заряда в полупроводниках

Электронная проводимость. В полупроводниках валентные электроны «принадлежат» двум соседним атомам. Например, в кристалле кремния у каждой пары атомов-соседей есть два «общих» электрона. Схематически это изображено на рисунке 60.1 (здесь изображены только валентные электроны).

Связь электронов с атомами в полупроводниках слабее, чем в диэлектриках. Поэтому даже при комнатной температуре тепловой энергии некоторых валентных электронов достаточно для того, чтобы они оторвались от своей пары атомов, став электронами проводимости. Так в полупроводнике возникают отрицательные носители заряда.

Проводимость полупроводника, обусловленную перемещением свободных электронов, называют электронной.

Дырочная проводимость. Когда валентный электрон становится электроном проводимости, он освобождает место, в котором возникает нескомпенсированный положительный заряд. Это место называют дыркой. Дырке соответствует положительный заряд, равный по модулю заряду электрона.