Преобразования подобия и их свойства. Применение подобий к решению задач

Пусть рассматривается некоторая фигура и фигура, полученная из нее преобразованием подобия (центр О, коэффициент k, см. рис. 263). Установим основные свойства преобразования подобия.

1. Преобразование подобия устанавливает между точками фигур взаимно однозначное соответствие.

Это значит, что при заданном центре О и коэффициенте подобия k всякой точке первой фигуры отвечает единственным образом определенная точка второй фигуры и что, обратно, всякая точка второй фигуры получена преобразованием единственной точки первой Фигуры.

Доказательство. То, что любой точке А исходной фигуры отвечает определенная точка А преобразованной фигуры, следует из определения, указывающего точный способ преобразования. Легко видеть, что, и обратно, преобразованная точка А определяет исходную точку А однозначно: обе точки должны лежать на одном луче при и на противоположных лучах при и отношение их расстояний до начала луча О известно: при Поэтому точка А, лежащая на известном нам расстоянии от начала О, определена единственным образом.

Следующее свойство можно назвать свойством взаимности.

2. Если некоторая фигура получена из другой фигуры преобразованием подобия с центром О и коэффициентом подобия k, то, и обратно, исходная фигура может быть получена преобразованием подобия из второй фигуры с тем же центром подобия и коэффициентом подобия

Это свойство, очевидно, следует хотя бы из рассуждений, приведенных при доказательстве свойства 1. Читателю остается проверить, что соотношение верно для обоих случаев: КО и

Фигуры, получаемые одна из другой преобразованием подобия, называют гомотетичными или подобно расположенными.

3. Любые точки, лежащие на одной прямой, преобразуются при гомотетии в щочки, лежащие на одной прямой, параллельной исходной (совпадающей с ней, если она проходит через О).

Доказательство. Случай, когда прямая проходит через О, ясен; любые точки этой прямой переходят в точки этой же прямой. Рассмотрим общий случай: пусть (рис. 266) А, В, С - три точки основной фигуры, лежащие на одной прямой; пусть А - образ точки А при преобразовании подобия.

Проведем покажем, что образы В и С также лежат на АК. Действительно, проведенная прямая и прямая АС отсекают на ОА, ОВ, ОС пропорциональные части: Таким образом, видно, что точки , лежащие на лучах ОВ и ОС и на прямой АК (аналогично получится и при являются соответственными для В и С. Можно сказать, что при преобразовании подобия всякая прямая, не проходящая через центр подобия, преобразуется в прямую, параллельную себе.

Из сказанного уже видно, что всякий отрезок преобразуется также в отрезок.

4. При преобразовании подобия отношение любой пары соответствующих отрезков равно одному и тому же числу - коэффициенту подобия.

Доказательство. Следует различать два случая.

1) Пусть данный отрезок АВ не лежит на луче, проходящем через центр подобия (рис. 266). В этом случае данные два отрезка - исходный АВ и ему подобно соответствующий АВ - суть отрезки параллельных прямых, заключенные между сторонами угла АОВ. Применяя свойство п. 203, находим , что и требовалось доказать.

2) Пусть данный отрезок, а значит, и ему подобно соответствующий лежат на одной прямой, проходящей через центр подобия (отрезки АВ и АВ на рис. 267). Из определения подобного преобразования имеем откуда, образуя производную пропорцию, находим , что и требовалось доказать.

5. Углы между соответствующими прямыми (отрезками) подобно расположенных фигур равны.

Доказательство. Пусть данный угол и угол, соответствующий ему при преобразовании подобия с центром О и некоторым коэффициентом k. На рис. 263, 264 представлены два варианта: . В любом из этих случаев по свойству 3 стороны углов попарно параллельны. При этом в одном случае обе пары сторон одинаково направлены, во втором - обе противоположно направлены. Таким образом, по свойству углов с параллельными сторонами углы равны.

Итак, доказана

Теорема 1. У подобно расположенных фигур любые соответствующие пары отрезков находятся в одном и том же постоянном отношении, равном коэффициенту подобия; любые пары соответствующих углов равны.

Таким образом, из двух подобно расположенных фигур любая может считаться изображением другой в некотором выбранной масштабе.

Пример 1. Построить фигуру, подобно расположенную с квадратом ABCD (рис. 268) при данном центре подобия О и коэффициенте подобия

Решение. Соединяем одну из вершин квадрата (например, А) с центром О и строим точку А такую, что Эта точка и будет соответствовать А в преобразовании подобия. Дальнейшее построение удобно провести так: соединим остальные вершины квадрата с О и через А проведем прямые, параллельные соответствующим сторонам АВ и AD. В точках их пересечения с О В и и будут помещаться вершины В и D. Так же проводим ВС параллельно ВС и находим четвертую вершину С. Почему ABCD также является квадратом? Обосновать самостоятельно!

Пример 2. На рис. 269 показана пара подобно расположенных треугольных пластинок. На одной из них изображена точка К. Построить соответствующую точку на второй.

Решение. Соединим К с одной из вершин треугольника, например с А. Полученная прямая пересечет сторону ВС в точке L. Находим соответствующую точку L как пересечение и ВС и строим искомую точку К на отрезке , пересекая его прямой ОК.

Теорема 2. Фигура, гомотетичная окружности (кругу), есть снова окружность (круг). Центры кругов подобно соответствуют.

Доказательство. Пусть С-центр окружности Ф радиуса R (рис. 270), О - центр подобия. Коэффициент подобия обозначим через k. Пусть С - точка, подобно соответствующая центру С окружности . (Мы еще не знаем, будет ли она сохранять роль центра!) Рассмотрим всевозможные радиусы окружности все они при преобразовании подобия перейдут в отрезки, параллельные себе и имеющие равные длины

Таким образом, все концы преобразованных радиусов разместятся вновь на одной окружности с центром С и радиусом R, что и требовалось доказать.

Обратно, любые две окружности находятся в гомотетичном соответствии (в общем случае даже двояком, с двумя разными центрами).

Действительно, проведем любой радиус первой окружности (радиус СМ на рис. 271) и оба параллельных ему радиуса второй окружности. Точки пересечения линии центров СС и прямых, соединяющих конец радиуса СМ с концами радиусов, параллельных ему, т. е. точки О и О" на рис. 271, могут быть приняты за центры гомотетии (первого и второго рода).

В случае концентрических окружностей имеется единственный центр гомотетии - общий центр окружностей; равные окружности находятся в соответствии гомотетии с центром в середине отрезка .

ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k -- одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F -- данная фигура и О -- фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k?OX, где k -- положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О -- центр гомотетии, k -- коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)


Рис.3

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k?OX, OY" = k?OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.

Лекция №16

Преобразование подобия. Гомотетия. Виды подобия.

Классификация подобий плоскости. Группа подобия и ее подгруппы.

Определение 16.1 . Преобразование плоскости называется преобразованием подобия, если k > 0, что для любых двух точек А и B и их образов A ` и B ` выполняется равенство
.

При k =1 преобразование подобия сохраняет расстояние, т.е. является движением. Значит, движение – частный случай подобия.

Определение 16.2. Преобразование плоскости называется гомотетией, если существует некоторое число m1 , что для любых трех точек плоскости М, М, M ` выполняется условие
.

Точка М - центр гомотетии, числоm – коэффициент гомотетии. Если m > 0 – гомотетия положительна, если m < 0 – гомотетия отрицательна.

Теорема 16.3. Гомотетия есть подобие.

Доказательство:

,
.

2. По определению гомотетии имеем:

3. Вычтем из первого равенства второе: ,

. Значит, гомотетия есть подобие, где коэффициент гомотетии
равен коэффициенту подобия.

Если точка М (x , у) при гомотетии переходит в точкуM`(x`,y`), то:

- аналитические выражения гомотетии.

Свойства гомотетии

    Гомотетия с коэффициентом, отличным от 1, переводит прямую, не проходящую через центр гомотетии, в прямую, ей параллельную; прямую, проходящую через центр – в себя.

    Гомотетия сохраняет простое отношение трех точек.

    Гомотетия сохраняет ориентацию плоскости.

    Гомотетия переводит угол в равный ему угол.

Теорема 16.4. Пусть f – преобразование подобия с коэффициентом k > 0 , а h – гомотетия с коэффициентом k и центром в точке М . Тогда существует единственное движение g такое, что f = g h .

Доказательство:

Рассмотрим композицию движения и гомотетии(помножим обе части равенства (*) на гомотетию):
илиg h = f (**)

Гомотетия обладает всеми свойствами движений, подобие также обладает всеми свойствами движений.

Так как гомотетия сохраняет ориентацию, а подобие есть произведение движения на гомотетию, т.е. движение имеет одну ориентацию с гомотетией, то подобие также имеет эту ориентацию. В этом случае говорят о подобии 1-го рода.

Если движение имеет ориентацию, противоположную гомотетии, то в этом случае подобие имеет противоположную ориентацию и является подобием 2-го рода.

Аналитические выражения подобия

Так какгомотетия задается выражениями , движение задается выражениями, то координаты образа
точки
в преобразовании подобия
вычисляются по формулам:

    Если ε = 1, то подобие первого рода;

    Если ε = -1, то подобие второго рода.

Теорема 16.5. Любое преобразование подобия имеет только одну неподвижную точку в том случае, если оно отлично от движения.

Доказательство:

1. Точка
является неподвижной точкой этого преобразования тогда и только тогда, когда
. Из аналитических выражений подобия следует, что

Определитель системы не равен 0 при ε = ± 1 . Таким образом, при k 1 для любого имеем, что определитель не равен нулю и, следовательно, система является однородной, т.е. будет иметь единственное решение.

Классификация подобия

Подобие первого рода.



Подобие второго рода.

Следствие16.6. Любое преобразование подобия, имеющее более чем одну неподвижную точку или не имеющее неподвижных точек, является движением.

Группа подобия и ее подгруппы.

Пусть P – множество всех преобразований подобия плоскости, и на нем задана некоторая операция «∙».

Множество Р является группой относительно этой операции.

Действительно:

Подобие первого рода образует подгруппу группы Р. Множество гомотетий с коэффициентом k (равным коэффициенту подобия) образует подгруппу группы Р.

Множество подобий второго рода не образует подгруппу, т.к. произведение подобий второго рода дает подобие первого рода.

Примеры

  • Каждая гомотетия является подобием.
  • Каждое движение (в том числе и тождественное) также можно рассматривать как преобразование подобия с коэффициентом k = 1 .

Подобные фигуры на рисунке имеют одинаковые цвета.

Связанные определения

Свойства

В метрических пространствах так же, как в n -мерных римановых , псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r -членную группу преобразований Ли , называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r -членная группа подобных преобразований Ли содержит (r − 1) -членную нормальную подгруппу движений.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Преобразование подобия" в других словарях:

    преобразование подобия - Изменение характеристик моделируемого объекта посредством умножения его параметров на значения таких величин, которые преобразуют сходственные параметры, обеспечивая этим подобие и делая математическое описание, если оно имеется, тождественным… …

    преобразование подобия - panašumo transformacija statusas T sritis fizika atitikmenys: angl. transformation of similitude vok. Ähnlichkeitstransformation, f; äquiforme Transformation, f rus. преобразование подобия, n pranc. conversion de similitude, f; transformation de… … Fizikos terminų žodynas

    См Гомотетия … Большой энциклопедический политехнический словарь

    преобразование подобия - Изменение количественных характеристик данного явления посредством умножения их на постоянные множители, преобразующие эти характеристики в соответствующие характеристики подобного явления … Политехнический терминологический толковый словарь

    Преобразование - (в кибернетике) изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П … Экономико-математический словарь

    преобразование (в кибернетике) - Изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П. в ходе вещественного процесса. В… … Справочник технического переводчика

    Замена одного математического объекта (геометрической фигуры, алгебраической формулы, функции и др.) аналогичным объектом, получаемым из первого по определенным правилам. Напр., заменяя алгебраическое выражение x2+4x+4 выражением (x+2)2,… … Большой Энциклопедический словарь

    Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

    Одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… … Большая советская энциклопедия

    Я; ср. 1. к Преобразовать и Преобразоваться. П. училища в институт. П. сельского хозяйства. П. механической энергии в тепловую. 2. Коренное изменение, перемена. Крупные социальные преобразования. Заняться хозяйственными преобразованиями. ◁… … Энциклопедический словарь


Геометрия

Подобие фигур

Свойства подобных фигур

Теорема. Когда фигура подобна фигуре , а фигура - фигуре , то фигуры и подобные.
Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. Например, в подобных треугольниках ABC и :
; ; ;
.
Признаки подобия треугольников
Теорема 1. Если два угла одного треугольника соответственно равны двум углам второго треугольника, то такие треугольники подобны.
Теорема 2. Если две стороны одного треугольника пропорциональны двум сторонам второго треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Теорема 3. Если стороны одного треугольника пропорциональны сторонам второго треугольника, то такие треугольники подобны.
Из этих теорем вытекают факты, которые являются полезными для решения задач.
1. Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от него треугольник, подобный данному.
На рисунке .

2. У подобных треугольников соответствующие элементы (высоты, медианы, биссектрисы и т.д.) относятся как соответствующие стороны.
3. У подобных треугольников периметры относятся как соответствующие стороны.
4. Если О - точка пересечения диагоналей трапеции ABCD , то .
На рисунке в трапеции ABCD: .

5. Если продолжение бічих сторон трапеции ABCD пересекаются в точке K , то (см. рисунок).
.
Подобие прямоугольных треугольников
Теорема 1. Если прямоугольные треугольники имеют равный острый угол, то они подобны.
Теорема 2. Если два катеты одного прямоугольного треугольника пропорциональны двум катетам второго прямоугольного треугольника, то эти треугольники подобны.
Теорема 3. Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе второго прямоугольного треугольника, то такие треугольники подобны.
Теорема 4. Высота прямоугольного треугольника, проведенная из вершины прямого угла, разбивает треугольник на два прямоугольных треугольника, подобные данному.
На рисунке .

Из подобия прямоугольных треугольников вытекает такое.
1. Катет прямоугольного треугольника является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу:
; ,
или
; .
2. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:
, или .
3. Свойство биссектрисы треугольника:
биссектриса треугольника (произвольного) делит противоположную сторону треугольника на отрезки, пропорциональные двум другим сторонам.
На рисунке в BP - биссектриса .
, или .

Сходство равносторонних и равнобедренных треугольников
1. Все равносторонние треугольники подобные.
2. Если равнобедренные треугольники имеют равные углы между боковыми сторонами, то они подобны.
3. Если равнобедренные треугольники имеют пропорциональные основание и боковую сторону, то они подобны.