Магнитное поле двух катушек. Магнитное поле катушки с током

Логично было бы рассказать еще об одном представителе пассивных радиоэлементов - катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.

Магнетизм, как свойство вещества

Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.

Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.

В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.

Магнитное поле постоянного тока

Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.

Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.

Если полярность включения батарейки изменить на обратную, то и стрелка компаса повернется другим концом - направление магнитного поля в проводах также изменилось по направлению. Когда схема будет отключена, стрелка компаса вновь вернется в свое законное положение. Нет тока в катушке, нет и магнитного поля.

Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.

На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?

Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.

Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.

А какие они магнитные линии?

Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.

Рисунок 1.

Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.

Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.

Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.

Рисунок 2.

Направление магнитного поля проводника с током определяется по правилу буравчика, - инструмента для сверления отверстий в дереве. Тут все очень просто: буравчик надо вращать так, чтобы его поступательное движение совпадало с направлением тока в проводе, тогда направление вращения рукоятки покажет, куда направлено магнитное поле.

Рисунок 3.

«Ток идет от нас» - крестик в середине круга это оперение стрелы, летящей за плоскость рисунка, а где «Ток идет к нам», показан наконечник стрелы, летящей из-за плоскости листа. По крайней мере, такое объяснение этих обозначений давалось на уроках физики в школе.

Рисунок 4.

Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.

Катушка индуктивности

Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.

Рисунок 5.

На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).

Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер - витки.

Катушка с сердечником

Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.

Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).

Рисунок 6.

В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.

В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.

Чем и как измерить магнитное поле

Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица - кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.

А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.

Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику - напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.

Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.

Рисунок 7.

Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.

Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.

Рисунок 8.

Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.

Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).

По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.

Рисунок 9.

В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.

Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.

Рисунок 10.

Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.

Рисунок 11.

Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.

Рисунок 12.

Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.

Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.

Рисунок 13.

Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.

Как работает электродвигатель

Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.

Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.

Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.

Рисунок 14.

Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.

Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.

Создает вокруг себя магнитное поле . Человек не был бы собой, если бы не придумал, как использовать такое замечательное свойство тока. На основе этого явления человек создал электромагниты.

Их применение очень широко и повсеместно в современном мире. Электромагниты замечательны тем, что в отличие от постоянных магнитов, их можно включать и выключать при необходимости, а также менять силу магнитного поля вокруг них. Каким образом используются магнитные свойства тока? Как создаются и используются электромагниты?

Магнитное поле катушки с током

В результате экспериментов удалось выяснить, что магнитное поле вокруг проводника с током можно усилить, если провод свернуть в форме спирали. Получается своего рода катушка. Магнитное поле такой катушки много больше магнитного поля одинокого проводника.

Причем силовые линии магнитного поля катушки с током располагаются схожим образом с силовыми линиями обычного прямоугольного магнита. Катушка имеет два полюса и дугами расходящиеся магнитные линии вдоль катушки. Такой магнит можно в любой момент включить и выключить, соответственно, включая и выключая ток в проводах катушки.

Способы влияния на магнитные силы катушки

Однако, оказалось, что катушка с током имеет и другие замечательные свойства. Чем из большего количества витков состоит катушка, тем сильнее становится магнитное поле. Это позволяет собирать магниты различной силы действия. Однако есть более простые способы воздействия на величину магнитного поля.

Так, при увеличении силы тока в проводах катушки возрастает сила магнитного поля, и, наоборот, при уменьшении силы тока, магнитное поле ослабевает. То есть, при элементарном подключении реостата, мы получаем регулируемый магнит.

Магнитное поле катушки с током можно значительно усилить, введя внутрь спирали железный стержень. Он называется сердечником. Применение сердечника позволяет создавать очень мощные магниты. Например, в производстве используют магниты, способные поднимать и удерживать несколько десятков тонн веса. Это достигается следующим образом.

Сердечник изгибают в виде дуги, а на два его конца надевают две катушки, по которым пускают ток. Катушки соединяют проводами 4е так, что их полюса совпадают. Сердечник усиливает их магнитное поле. Снизу к этой конструкции подводят пластину с крюком, на который подвешивают груз. Подобные устройства используют на заводах и в портах для того, чтобы перемещать грузы очень большого веса. Эти грузы легко подсоединяются и отсоединяются при включении и отключении тока в катушках.

Электромагниты и их применение

Электромагниты используют настолько повсеместно, что, пожалуй, трудно назвать электромеханический прибор, в котором бы они не применялись. Двери в подъездах удерживаются электромагнитами.

Электродвигатели самых различных устройств преобразуют электрическую энергию в механическую с помощью электромагнитов. Звук в колонках создается с помощью магнитов. И это далеко не полный список. Огромное количество удобств современной жизни обязано своим существованием применению электромагнитов.

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга . Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью . Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра .

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I –

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение


И у нас получится вот такая картина с магнитными силовыми линиями:


Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф) . Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается, то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома :


где

I – сила тока в катушке, А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником . Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник:-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:


В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:


Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.


Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые . Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:


Также существует еще один особый вид дросселей – это . Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.


Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.


Имеется ферритовый сердечник


Начинаю вводить катушку в сердечник на самый край


LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита


35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита


20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.


Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту


13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.


Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.


Замеряем индуктивность


15 микрогенри

Отдалим витки катушки друг от друга


Замеряем снова


Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.


Замеряем


Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах


Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей , их общая индуктивность будет равняться сумме индуктивностей.


А при параллельном соединении получаем вот так:


При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Наибольший практический интерес представляет собой магнитное поле катушки с током. На рисунке 97 изображена катушка, состоящая из большого числа витков провода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к её концам, при отключении тока они отпадают.

Рис. 97. Притяжение железных опилок катушкой с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой - к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса - северный и южный (рис. 98).

Рис. 98. Полюсы катушки с током

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого тока, можно обнаружить при помощи опилок (рис. 99). Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному (см. рис. 99).

Рис. 99. Магнитные линии катушки с током

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять (усиливать или ослаблять) в широких пределах. Рассмотрим способы, при помощи которых можно это делать.

На рисунке 97 изображён опыт, в котором наблюдается действие магнитного поля катушки с током. Если заменить катушку другой, с большим числом витков проволоки, то при той же силе тока она притянет больше железных предметов. Значит, магнитное действие катушки с током тем сильнее, чем больше число витков в ней .

Включим в цепь, содержащую катушку, реостат (рис. 100) и при помощи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении - ослабляется .

Рис. 100. Действие магнитного поля катушки

Оказывается также, что магнитное действие катушки с током можно значительно усилить, не меняя число её витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, введённое внутрь катушки, усиливает магнитное действие катушки (рис. 101).

Рис. 101. Действие магнитного поля катушки с железным сердечником

    Катушка с железным сердечником внутри называется электромагнитом .

Электромагнит - одна из основных деталей многих технических приборов. На рисунке 102 изображён дугообразный электромагнит, удерживающий якорь (железную пластинку) с подвешенным грузом.

Рис. 102. Дугообразный электромагнит

Электромагниты широко применяют в технике благодаря их замечательным свойствам. Они быстро размагничиваются при выключении тока, в зависимости от назначения их можно изготавливать самых различных размеров, во время работы электромагнита можно регулировать его магнитное действие, меняя силу тока в катушке.

Электромагниты, обладающие большой подъёмной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков (рис. 103).

Рис. 103. Применение электромагнитов

На рисунке 104 показан в разрезе магнитный сепаратор для зерна. В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зёрнам полезных злаков, но прилипают к зёрнам сорняков. Зёрна 1 высыпаются из бункера на вращающийся барабан 2. Внутри барабана находится сильный электромагнит 5. Притягивая железные частицы 4, он извлекает зёрна сорняков из потока зерна 3 и таким путём очищает зерно от сорняков и случайно попавших железных предметов.

Рис. 104. Магнитный сепаратор

Применяются электромагниты в телеграфном, телефонном аппаратах и во многих других устройствах.

Вопросы

  1. В каком направлении устанавливается катушка с током, подвешенная на длинных тонких проводниках? Какое сходство имеется у неё с магнитной стрелкой?
  2. Какими способами можно усилить магнитное действие катушки с током?
  3. Что называют электромагнитом?
  4. Для каких целей используют на заводах электромагниты?
  5. Как устроен магнитный сепаратор для зерна?

Упражнение 41

  1. Нужно построить электромагнит, подъёмную силу которого можно регулировать, не изменяя конструкции. Как это сделать?
  2. Что надо сделать, чтобы изменить магнитные полюсы катушки с током на противоположные?
  3. Как построить сильный электромагнит, если конструктору дано условие, чтобы ток в электромагните был сравнительно малым?
  4. Используемые в подъёмном кране электромагниты обладают громадной мощностью. Электромагниты, при помощи которых удаляют из глаз случайно попавшие железные опилки, очень слабы. Какими способами достигают такого различия?

Задание

Мы продолжаем изучение вопросов электромагнитных явлений. И на сегодняшнем уроке рассмотрим магнитное поле катушки с током и электромагнит.

Наибольший практический интерес представляет собой магнитное поле катушки с током. Чтобы получить катушку, надо взять изолированный проводник и намотать его на каркас. Такая катушка содержит в себе большое количество витков провода. Обратите внимание: эти провода намотаны на пластмассовый каркас и у этого провода есть два вывода (рис. 1).

Рис. 1. Катушка

Исследованием магнитного поля катушки занимались два известных ученых: Андре-Мари Ампер и Франсуа Араго. Они выяснили, что магнитное поле катушки полностью соответствует магнитному полю постоянного магнита (рис. 2).

Рис. 2. Магнитное поле катушки и постоянного магнита

Почему магнитные линии катушки имеют такой вид

Если через прямой проводник протекает постоянный ток, вокруг него возникает магнитное поле. Направление магнитного поля можно определить по «правилу буравчика» (рис. 3).

Рис. 3. Магнтное поле проводника

Сгибаем этот проводник по спирали. Направление тока остается таким же, магнитное поле проводника так же существует вокруг проводника, поле разных участков проводника складывается. Внутри катушки магнитное поле будет сосредоточено. В итоге получим следующую картину магнитного поля катушки (рис. 4).

Рис. 4. Магнитное поле катушки

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого проводника, можно обнаружить при помощи опилок (рис. 5). Линии магнитного поля катушки с током являются также замкнутыми.

Рис. 5. Расположение металлических опилок около катушки с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой - к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса - северный и южный (рис. 6).

Рис. 6. Полюса катушки

На электрических схемах катушка обозначается следующим образом:

Рис. 7. Обозначение катушки на схемах

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять в широких пределах.

Магнитное поле катушки велико по сравнению с магнитным полем проводника (при одинаковой силе тока).

При пропускании тока через катушку вокруг нее образуется магнитное поле. Чем больший ток протекает по катушке, тем сильнее будет магнитное поле.

Его можно фиксировать с помощью магнитной стрелки или металлической стружки.
Также магнитное поле катушки зависит от количества витков. Магнитное поле катушки с током тем сильнее, чем больше число витков в ней. То есть мы можем регулировать поле катушки, изменяя количество ее витков или электрический ток, протекающий по катушке.

Но самым интересным оказалось открытие английского инженера Стёрджента. Он продемонстрировал следующее: ученый взял и надел катушку на железный сердечник. Дело все в том, что, пропуская электрический ток по виткам этих катушек, магнитное поле многократно увеличивалось - и все железные предметы, которые находились вокруг, стали притягиваться к этому устройству (рис. 8). Это устройство получило название «электромагнит».

Рис. 8. Электромагнит

Когда сообразили сделать железный крючок и присоединить его к этому устройству, получили возможность перетаскивать различные грузы. Итак, что такое электромагнит?

Определение

Электромагнит - это катушка с большим количеством витков обмотки, надетая на железный сердечник, которая обретает свойства магнита при прохождении по обмотке электрического тока.

Электромагнит на схеме обозначается как катушка, а сверху располагается горизонтальная линия (рис. 9). Эта линия обозначает железный сердечник.

Рис. 9. Обозначение электромагнита

Когда мы изучали электрические явления, то говорили, что у электрического тока есть разные свойства, в том числе магнитные. И один из экспериментов, которые мы обсуждали, был связан с тем, что мы берем проволоку, присоединенную к источнику тока, наматываем на железный гвоздь и наблюдаем, как к этому гвоздю начинают притягиваться различные железные предметы (рис. 10). Вот это и есть простейший электромагнит. И теперь мы понимаем, что простейший электромагнит нам обеспечивают протекание тока в катушке, большое количество витков и обязательно - металлический сердечник.

Рис. 10. Простейший электромагнит

На сегодняшний день электромагниты очень широко распространены. Электромагниты работают практически везде и всюду. Например, если нам надо перетащить достаточно большие грузы, мы используем электромагниты. И, регулируя силу тока, мы будем, соответственно, силу либо увеличивать, либо уменьшать. Еще одним примером использования электромагнитов является электрический звонок.

Открытие и закрытие дверей и тормоза некоторых транспортных средств (например, трамвая) тоже обеспечиваются электромагнитами.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Инернет-портал «сайт» ()
  2. Инернет-портал «сайт» ()
  3. Инернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Что представляет собой катушка?
  2. У любой ли катушки есть магнитное поле?
  3. Опишите простейший электромагнит.