Вдвигая магнит в катушку моток заметьте. Лабораторная работа по физике: "Изучение явления электромагнитной индукции"

  • " onclick="window.open(this.href,"win2","status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no"); return false;" > Печать
  • E-mail

Лабораторная работа № 9

Изучение явления электромагнитной индукции

Цель работы: изучить условия возникновения индукционного тока, ЭДС индукции.

Оборудование : катушка, два полосовых магнита, миллиамперметр.

Теория

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции .

Многочисленные опыты Фарадея показывают, что с помощью магнитного поля можно получить электрический ток в проводнике.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Ток, возникающий при явлении электромагнитной индук­ции, называют индукционным.

В электрической цепи (рисунок 1) возникает индукционный ток, если есть движение магнита относительно катушки, или наоборот. Направление индукционного тока зависит как от направления движения магнита, так и от расположения его полюсов. Индукционный ток отсутствует, если нет относительного перемещения катушки и магнита.

Рисунок 1 .

Строго говоря, при движении контура в магнит­ном поле генерируется не определенный ток, а определенная э. д. с.

Рисунок 2.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции E инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус :

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограни­ченную контуром.

Знак минус в формуле отражает правило Ленца .

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток .

При возрастании магнитного потока Ф>0, а ε инд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его маг­нитное поле уменьшает магнитный поток через контур.

При уменьшении магнитного потока Ф<0, а ε инд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл оно выражает закон сохранения энергии : если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой - слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке 2.

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке 1 красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Ход работы.

Подготовьте для отчета таблицу и по мере проведения опытов заполните её.

Действия с магнитом и катушкой

Показания

милли-амперметра,

Направления отклонения стрелки миллиампер-метра

(вправо, влево или не откланяется)

Направление индукционного тока

(по правилу Ленца)

Быстро вставить магнит в катушку северным полюсом

Оставить магнит в катушке неподвижным

после опыта 1

Быстро вытащить магнит из катушки

Быстро приблизить катушку к северному полюсу магнита

Оставить катушку неподвижной после опыта 4

Быстро вытащить катушку от северного полюса магнита

Медленно вставить в катушку магнит северным полюсом

Цель работы: Изучить явление электромагнитной индукции.
Оборудование: Миллиамперметр, катушка-моток, магнит дугообразный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).
Указания к работе:
1. Подключите катушку-моток к зажимам миллиамперметра.
2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд остановите магнит, а затем вновь приближайте его к катушке, вдвигая в неё (рис. 196). Запишите, возникал ли в катушке индукционный ток во время движения магнита относительно катушки; во время его остановки.

Запишите, менялся ли магнитный поток Ф, пронизывающий катушку, во время движения магнита; во время его остановки.
4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индукционный ток.
5. Почему при приближении магнита к катушке магнитный поток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков
ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)
6. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра.
Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от неё одного и того же полюса магнита.

4. Приближайте полюс магнита к катушке с такой скоростью, чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.
Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.
При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку, менялся быстрее?
При быстром или медленном изменении магнитного потока сквозь катушку сила тока в ней была больше?
На основании вашего ответа на последний вопрос сделайте и запишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф, пронизывающего этукатушку.
5. Соберите установку для опыта по рисунку 197.
6. Проверьте, возникает ли в катушке-мотке 1 индукционный ток в следующих случаях:
а) при замыкании и размыкании цепи, в которую включена катушка 2;
б) при протекании через катушку 2 постоянного тока;
в) при увеличении и уменьшении силы тока, протекающего через катушку 2, путём перемещения в соответствующую сторону движка реостата.
10. В каких из перечисленных в пункте 9 случаев меняется магнитный поток, пронизывающий катушку 1? Почему он меняется?
11. Пронаблюдайте возникновение электрического тока в модели генератора (рис. 198). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.
Рис. 196

Вы уже знаете, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга.

Но если электрический ток, как говорят, «создаёт» магнитное поле, то не существует ли обратного явления? Нельзя ли с помощью магнитного поля «создать» электрический ток?

Такую задачу в начале XIX в. пытались решить многие учёные. Поставил её перед собой и английский учёный Майкл Фарадей. «Превратить магнетизм в электричество» - так записал в своём дневнике эту задачу Фарадей в 1822 г. Почти 10 лет упорной работы потребовалось учёному для её решения.

Майкл Фарадей (1791-1867)
Английский физик. Открыл явление электромагнитной индукции, экстратоки при замыкании и размыкании

Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, используя современные приборы.

На рисунке 119, а показано, что если в катушку, замкнутую на гальванометр, вдвигается магнит, то стрелка гальванометра при этом отклоняется, указывая на появление индукционного (наведённого) тока в цепи катушки. Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полученный от гальванического элемента или аккумулятора. Название «индукционный» указывает только на причину его возникновения.

Рис. 119. Возникновение индукционного тока при движении магнита и катушки относительно друг друга

При извлечении магнита из катушки снова наблюдается отклонение стрелки гальванометра, но в противоположную сторону, что указывает на возникновение в катушке тока противоположного направления.

Как только движение магнита относительно катушки прекращается, прекращается и ток. Следовательно, ток в цепи катушки существует только во время движения магнита относительно катушки.

Опыт можно изменить. На неподвижный магнит будем надевать катушку и снимать её (рис. 119, б). И опять можно обнаружить, что во время движения катушки относительно магнита в цепи снова появляется ток.

На рисунке 120 изображена катушка А, включённая в цепь источника тока. Эта катушка вставлена в другую катушку С, подключённую к гальванометру. При замыкании и размыкании цепи катушки А в катушке С возникает индукционный ток.

Рис. 120. Возникновение индукционного тока при замыкании и размыкании электрической цепи

Можно вызвать появление индукционного тока в катушке С и путём изменения силы тока в катушке А или движением этих катушек относительно друг друга.

Проделаем ещё один опыт. Поместим в магнитное поле плоский контур из проводника, концы которого соединим с гальванометром (рис. 121, а). При повороте контура гальванометр отмечает появление в нём индукционного тока. Ток будет появляться и в том случае, если рядом с контуром или внутри него вращать магнит (рис. 121, б).

Рис. 121. При вращении контура в магнитном поле(магнита относительно контура) изменение магнитного потока приводит к возникновению индукционного тока

Во всех рассмотренных опытах индукционный ток возникал при изменении магнитного потока, пронизывающего охваченную проводником площадь.

В случаях, изображённых на рисунках 119 и 120, магнитный поток менялся за счёт изменения индукции магнитного поля. Действительно, при движении магнита и катушки относительно друг друга (см. рис. 119) катушка попадала в области поля с большей или меньшей магнитной индукцией (так как поле магнита неоднородное). При замыкании и размыкании цепи катушки А (см. рис. 120) индукция создаваемого этой катушкой магнитного поля менялась за счёт изменения силы тока в ней.

При вращении проволочного контура в магнитном поле (см. рис. 121, а) или магнита относительно контура (см. рис. 121, б") магнитный поток менялся за счёт изменения ориентации этого контура по отношению к линиям магнитной индукции.

Таким образом,

  • при всяком изменении магнитного потока, пронизывающего площадь, ограниченную замкнутым проводником, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока

В этом и заключается явление электромагнитной индукции.

Открытие электромагнитной индукции принадлежит к числу самых замечательных научных достижений первой половины XIX в. Оно вызвало появление и бурное развитие электротехники и радиотехники.

На основании явления электромагнитной индукции были созданы мощные генераторы электрической энергии, в разработке которых принимали участие учёные и техники разных стран. Среди них были и наши соотечественники: Эмилий Христианович Ленц, Борис Семёнович Якоби, Михаил Иосифович Доливо-Добровольский и другие, внёсшие большой вклад в развитие электротехники.

Вопросы

  1. С какой целью ставились опыты, изображённые на рисунках 119-121? Как они проводились?
  2. При каком условии в опытах (см. рис. 119, 120) в катушке, замкнутой на гальванометр, возникал индукционный ток?
  3. В чём заключается явление электромагнитной индукции?
  4. В чём важность открытия явления электромагнитной индукции?

Упражнение 36

  1. Как создать кратковременный индукционный ток в катушке К 2 , изображённой на рисунке 118?
  2. Проволочное кольцо помещено в однородное магнитное поле (рис. 122). Стрелочки, изображённые рядом с кольцом, показывают, что в случаях а и б кольцо движется прямолинейно вдоль линий индукции магнитного поля, а в случаях в, г и д - вращается вокруг оси ОО". В каких из этих случаев в кольце может возникнуть индукционный ток?

На этом уроке мы проведем лабораторную работу №4 «Изучение явления электромагнитной индукции». Целью этого занятия будет изучение явления электромагнитной индукции. С помощью необходимого оборудования мы проведем лабораторную работу, в конце которой узнаем, как правильно изучать и определять это явление.

Цель - изучение явления электромагнитной индукции .

Оборудование:

1. Миллиамперметр.

2. Магнит.

3. Катушка-моток.

4. Источник тока.

5. Реостат.

6. Ключ.

7. Катушка от электромагнита.

8. Соединительные провода.

Рис. 1. Экспериментальное оборудование

Начнем лабораторную работу со сбора установки. Чтобы собрать схему, которую мы будем использовать в лабораторной работе, присоединим моток-катушку к миллиамперметру и используем магнит, который будем приближать или удалять от катушки. Одновременно с этим мы должны вспомнить, что будет происходить, когда будет появляться индукционный ток.

Рис. 2. Эксперимент 1

Подумайте над тем, как объяснить наблюдаемое нами явление. Каким образом влияет магнитный поток на то, что мы видим, в частности происхождение электрического тока. Для этого посмотрите на вспомогательный рисунок.

Рис. 3. Линии магнитного поля постоянного полосового магнита

Обратите внимание, что линии магнитной индукции выходят из северного полюса, входят в южный полюс. При этом количество этих линий, их густота различна на разных участках магнита. Обратите внимание, что направление индукции магнитного поля тоже изменяется от точки к точке. Поэтому можно сказать, что изменение магнитного потока приводит к тому, что в замкнутом проводнике возникает электрический ток, но только при движении магнита, следовательно, изменяется магнитный поток, пронизывающий площадь, ограниченную витками этой катушки.

Следующий этап нашего исследования электромагнитной индукции связан с определением направления индукционного тока . О направлении индукционного тока мы можем судить по тому, в какую сторону отклоняется стрелка миллиамперметра. Воспользуемся дугообразным магнитом и увидим, что при приближении магнита стрелка отклонится в одну сторону. Если теперь магнит двигать в другую сторону, стрелка отклонится в другую сторону. В результате проведенного эксперимента мы можем сказать, что от направления движения магнита зависит и направление индукционного тока. Отметим и то, что от полюса магнита тоже зависит направление индукционного тока.

Обратите внимание, что величина индукционного тока зависит от скорости перемещения магнита, а вместе с тем и от скорости изменения магнитного потока.

Вторая часть нашей лабораторной работы связана будет с другим экспериментом. Посмотрим на схему этого эксперимента и обсудим, что мы будем теперь делать.

Рис. 4. Эксперимент 2

Во второй схеме в принципе ничего не изменилось относительно измерения индукционного тока. Тот же самый миллиамперметр, присоединенный к мотку катушки. Остается все, как было в первом случае. Но теперь изменение магнитного потока мы будем получать не за счет движения постоянного магнита, а за счет изменения силы тока во второй катушке.

В первой части будем исследовать наличие индукционного тока при замыкании и размыкании цепи. Итак, первая часть эксперимента: мы замыкаем ключ. Обратите внимание, ток нарастает в цепи, стрелка отклонилась в одну сторону, но обратите внимание, сейчас ключ замкнут, а электрического тока миллиамперметр не показывает. Дело в том, что нет изменения магнитного потока, мы уже об этом говорили. Если теперь ключ размыкать, то миллиамперметр покажет, что направление тока изменилось.

Во втором эксперименте мы проследим, как возникает индукционный ток , когда меняется электрический ток во второй цепи.

Следующая часть опыта будет заключаться в том, чтобы проследить, как будет изменяться индукционный ток, если менять величину тока в цепи за счет реостата. Вы знаете, что если мы изменяем электрическое сопротивление в цепи, то, следуя закону Ома, у нас будет меняться и электрический ток. Раз изменяется электрический ток, будет изменяться магнитное поле. В момент перемещения скользящего контакта реостата изменяется магнитное поле, что приводит к появлению индукционного тока.

В заключение лабораторной работы мы должны посмотреть на то, как создается индукционный электрический ток в генераторе электрического тока.

Рис. 5. Генератор электрического тока

Главная его часть - это магнит, а внутри этих магнитов располагается катушка с определенным количеством намотанных витков. Если теперь вращать колесо этого генератора в обмотке катушки будет наводиться индукционный электрический ток. Из эксперимента видно, что увеличение числа оборотов приводит к тому, что лампочка начинает гореть ярче.

Список дополнительной литературы:

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н. Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 347-348. Мякишев Г.Я. Физика: Электродинамика. 10-11 классы. Учебник для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - 476с. Пурышева Н.С. Физика. 9 класс. Учебник. / Пурышева Н.С., Важеевская Н.Е., Чаругин В.М. 2-е изд., стереотип. - М.: Дрофа, 2007.

ЛАБОРАТОРНАЯ РАБОТА «ИЗУЧЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ» Цель урока 6 изучить явление электромагнитной индукции. Оборудование: миллиамперметр, катушка-моток, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, магнит. Ход работы 1. Подключите катушку-моток к зажимам миллиамперметра. 2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд остановите магнит, а затем вновь приближайте его к катушке, двигая в нее. 3. Запишите, возникал ли в катушке индукционный ток во время движения магнита относительно катушки? Во время его остановки? 4. Запишите, менялся ли магнитный поток Ф, пронизывающий катушку, во время движения магнита? Во время его остановки? 5. На основании ваших ответов на предыдущий вопрос, сделайте и запишите вывод о том, при каком условии в катушке возникал индукционный ток. 6. Почему при приближении магнита к катушке магнитный поток, пронизывающий эту катушку, менялся? (для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков ли модуль вектора магнитной индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.) 7. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра. Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от нее одного и того же полюса магнита. 8. Приближайте полюс магнит так катушке с такой скоростью, чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы. Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае. При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку, менялся быстрее? При быстром или медленном изменении магнитного потока сквозь катушку в ней возникал больший по модулю ток? На основание вашего ответа на последний вопрос сделайте и запишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф, про

150.000₽ призовой фонд 11 почетных документов Свидетельство публикации в СМИ