Антивещество: прорыв в физике или угроза всем живущим? Что такое Антиматерия? Существующие и перспективные способы применения.

По современным представлениям, силы, определяющие структуру материи (сильное взаимодействие , образующее ядра , и электромагнитное взаимодействие , образующее атомы и молекулы), совершенно одинаковы (симметричны) как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.

Свойства антивещества полностью совпадают со свойствами обычного вещества, рассматриваемого через зеркало (зеркальность возникает вследствие несохранения чётности в слабых взаимодействиях) .

В ноябре 2015 года группа российских и зарубежных физиков на американском коллайдере RHIC экспериментально доказала идентичность структуры вещества и антивещества путём точного измерения сил взаимодействия между антипротонами, оказавшимися в этом плане неотличимыми от обычных протонов.

При взаимодействии вещества и антивещества происходит их аннигиляция , при этом образуются высокоэнергичные фотоны или пары частиц-античастиц. При взаимодействии 1 кг антивещества и 1 кг вещества выделится приблизительно 1,8·10 17 джоулей энергии, что эквивалентно энергии, выделяемой при взрыве 42,96 мегатонн тротила . Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба »: масса 26,5 т, при взрыве высвободило энергию, эквивалентную ~57-58,6 мегатоннам . Теллеровский предел для термоядерного оружия подразумевает, что самый эффективный выход энергии не превысит 6 кт /кг массы устройства. Следует отметить, что порядка 50 % энергии при аннигиляции пары нуклон-антинуклон выделяется в форме нейтрино , которые практически не взаимодействуют с веществом.

Ведётся довольно много рассуждений на тему того, почему наблюдаемая часть Вселенной состоит почти исключительно из вещества, и существуют ли другие места, заполненные, наоборот, практически полностью антивеществом; но на сегодняшний день наблюдаемая асимметрия вещества и антивещества во вселенной - одна из самых больших нерешённых задач физики (см. Барионная асимметрия Вселенной). Предполагается, что столь сильная асимметрия возникла в первые доли секунды после Большого Взрыва .

Получение

Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон ; затем были получены и более тяжёлые антиядра. В 1995 году в ЦЕРНе был синтезирован атом антиводорода , состоящий из позитрона и антипротона . В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.

В 2013 году эксперименты проводились на опытной установке, построенной на базе вакуумной ловушки ALPHA. Учёные провели измерения движения молекул антиматерии под действием гравитационного поля Земли. И хотя результаты оказались неточными, а измерения имеют низкую статистическую значимость, физики удовлетворены первыми опытами по прямому измерению гравитации антиматерии.

Стоимость

Антивещество известно как самая дорогая субстанция на Земле - по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США . По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов . По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объём, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков .

См. также

Напишите отзыв о статье "Антивещество"

Примечания

Ссылки

  • - 2011
  • Пахлов, Павел. . postnauka.ru (23.05.2014).
  • Пахлов, Павел. . postnauka.ru (6.03.2014).

Литература

  • Власов Н. А. Антивещество. - М .: Атомиздат , 1966. - 184 с.
  • Широков Ю. М. , Юдин Н. П. Ядерная физика. - М .: Наука , 1972. - 670 с.

Отрывок, характеризующий Антивещество

И в доказательство неопровержимости этого довода складки все сбежали с лица.
Князь Андрей вопросительно посмотрел на своего собеседника и ничего не ответил.
– Зачем вы поедете? Я знаю, вы думаете, что ваш долг – скакать в армию теперь, когда армия в опасности. Я это понимаю, mon cher, c"est de l"heroisme. [мой дорогой, это героизм.]
– Нисколько, – сказал князь Андрей.
– Но вы un philoSophiee, [философ,] будьте же им вполне, посмотрите на вещи с другой стороны, и вы увидите, что ваш долг, напротив, беречь себя. Предоставьте это другим, которые ни на что более не годны… Вам не велено приезжать назад, и отсюда вас не отпустили; стало быть, вы можете остаться и ехать с нами, куда нас повлечет наша несчастная судьба. Говорят, едут в Ольмюц. А Ольмюц очень милый город. И мы с вами вместе спокойно поедем в моей коляске.
– Перестаньте шутить, Билибин, – сказал Болконский.
– Я говорю вам искренно и дружески. Рассудите. Куда и для чего вы поедете теперь, когда вы можете оставаться здесь? Вас ожидает одно из двух (он собрал кожу над левым виском): или не доедете до армии и мир будет заключен, или поражение и срам со всею кутузовскою армией.
И Билибин распустил кожу, чувствуя, что дилемма его неопровержима.
– Этого я не могу рассудить, – холодно сказал князь Андрей, а подумал: «еду для того, чтобы спасти армию».
– Mon cher, vous etes un heros, [Мой дорогой, вы – герой,] – сказал Билибин.

В ту же ночь, откланявшись военному министру, Болконский ехал в армию, сам не зная, где он найдет ее, и опасаясь по дороге к Кремсу быть перехваченным французами.
В Брюнне всё придворное население укладывалось, и уже отправлялись тяжести в Ольмюц. Около Эцельсдорфа князь Андрей выехал на дорогу, по которой с величайшею поспешностью и в величайшем беспорядке двигалась русская армия. Дорога была так запружена повозками, что невозможно было ехать в экипаже. Взяв у казачьего начальника лошадь и казака, князь Андрей, голодный и усталый, обгоняя обозы, ехал отыскивать главнокомандующего и свою повозку. Самые зловещие слухи о положении армии доходили до него дорогой, и вид беспорядочно бегущей армии подтверждал эти слухи.
«Cette armee russe que l"or de l"Angleterre a transportee, des extremites de l"univers, nous allons lui faire eprouver le meme sort (le sort de l"armee d"Ulm)», [«Эта русская армия, которую английское золото перенесло сюда с конца света, испытает ту же участь (участь ульмской армии)».] вспоминал он слова приказа Бонапарта своей армии перед началом кампании, и слова эти одинаково возбуждали в нем удивление к гениальному герою, чувство оскорбленной гордости и надежду славы. «А ежели ничего не остается, кроме как умереть? думал он. Что же, коли нужно! Я сделаю это не хуже других».
Князь Андрей с презрением смотрел на эти бесконечные, мешавшиеся команды, повозки, парки, артиллерию и опять повозки, повозки и повозки всех возможных видов, обгонявшие одна другую и в три, в четыре ряда запружавшие грязную дорогу. Со всех сторон, назади и впереди, покуда хватал слух, слышались звуки колес, громыхание кузовов, телег и лафетов, лошадиный топот, удары кнутом, крики понуканий, ругательства солдат, денщиков и офицеров. По краям дороги видны были беспрестанно то павшие ободранные и неободранные лошади, то сломанные повозки, у которых, дожидаясь чего то, сидели одинокие солдаты, то отделившиеся от команд солдаты, которые толпами направлялись в соседние деревни или тащили из деревень кур, баранов, сено или мешки, чем то наполненные.
На спусках и подъемах толпы делались гуще, и стоял непрерывный стон криков. Солдаты, утопая по колена в грязи, на руках подхватывали орудия и фуры; бились кнуты, скользили копыта, лопались постромки и надрывались криками груди. Офицеры, заведывавшие движением, то вперед, то назад проезжали между обозами. Голоса их были слабо слышны посреди общего гула, и по лицам их видно было, что они отчаивались в возможности остановить этот беспорядок. «Voila le cher [„Вот дорогое] православное воинство“, подумал Болконский, вспоминая слова Билибина.
Желая спросить у кого нибудь из этих людей, где главнокомандующий, он подъехал к обозу. Прямо против него ехал странный, в одну лошадь, экипаж, видимо, устроенный домашними солдатскими средствами, представлявший середину между телегой, кабриолетом и коляской. В экипаже правил солдат и сидела под кожаным верхом за фартуком женщина, вся обвязанная платками. Князь Андрей подъехал и уже обратился с вопросом к солдату, когда его внимание обратили отчаянные крики женщины, сидевшей в кибиточке. Офицер, заведывавший обозом, бил солдата, сидевшего кучером в этой колясочке, за то, что он хотел объехать других, и плеть попадала по фартуку экипажа. Женщина пронзительно кричала. Увидав князя Андрея, она высунулась из под фартука и, махая худыми руками, выскочившими из под коврового платка, кричала:
– Адъютант! Господин адъютант!… Ради Бога… защитите… Что ж это будет?… Я лекарская жена 7 го егерского… не пускают; мы отстали, своих потеряли…
– В лепешку расшибу, заворачивай! – кричал озлобленный офицер на солдата, – заворачивай назад со шлюхой своею.
– Господин адъютант, защитите. Что ж это? – кричала лекарша.
– Извольте пропустить эту повозку. Разве вы не видите, что это женщина? – сказал князь Андрей, подъезжая к офицеру.
Офицер взглянул на него и, не отвечая, поворотился опять к солдату: – Я те объеду… Назад!…
– Пропустите, я вам говорю, – опять повторил, поджимая губы, князь Андрей.
– А ты кто такой? – вдруг с пьяным бешенством обратился к нему офицер. – Ты кто такой? Ты (он особенно упирал на ты) начальник, что ль? Здесь я начальник, а не ты. Ты, назад, – повторил он, – в лепешку расшибу.
Это выражение, видимо, понравилось офицеру.
– Важно отбрил адъютантика, – послышался голос сзади.
Князь Андрей видел, что офицер находился в том пьяном припадке беспричинного бешенства, в котором люди не помнят, что говорят. Он видел, что его заступничество за лекарскую жену в кибиточке исполнено того, чего он боялся больше всего в мире, того, что называется ridicule [смешное], но инстинкт его говорил другое. Не успел офицер договорить последних слов, как князь Андрей с изуродованным от бешенства лицом подъехал к нему и поднял нагайку:
– Из воль те про пус тить!
Офицер махнул рукой и торопливо отъехал прочь.

Антиматерия – это материя, состоящая из античастиц, то есть частиц с точно такими же, но обратными по значению и свойствами тех частиц, противоположностями которых они являются. Каждая частица обладает своей зеркальной копией – античастицей. Античастицы протона, нейтрона и называются антипротоном, антинейтроном и позитроном, соответственно. Протоны и нейтроны, в свою очередь, состоят из еще более меньших частиц, называемых кварками. Антипротоны и антинейтроны состоят из антикварков.

Античастицы переносят аналогичный, но противоположный по значению заряд, как и их прототипы из обычной материи, но обладают той же массой и похожи на них во всех других отношениях. Как предполагают ученые, во могут существовать целые галактики из антиматерии. Также есть мнение, что антивещества во Вселенной может быть даже больше, чем обычного вещества. Но увидеть антиматерию невозможно, так же как объекты окружающего нас обычного мира. Она не видима для человеческого зрения.

Большинство астрономов, все же сходятся во мнении, что антивещества все-таки не так уж и много или вообще нет в природе, иначе, как они рассуждают, во Вселенной было бы много мест где обычная материя и антиматерия сталкиваются друг с другом, что сопровождалось бы мощным потоком гамма-лучей, вызванных их аннигиляцией. Аннигиляция – это взаимоуничтожение частиц материи и антиматерии, сопровождающееся выделением энергии. Однако такие регионы не были найдены.

Одна из возможных гипотез возникновения антиматерии связана с теорией большого взрыва. Эта теория утверждает, что вся наша возникла в результате и расширения некой точки в пространстве. После взрыва возникло равное количество материи и антиматерии. Сразу же начался процесс их взаимоуничтожения. Однако по какой-то причине материи оказалось немного больше, что позволило образоваться Вселенной в привычной нам форме.

Из-за отсутствия возможности изучить свойства антиматерии в , ученые прибегают к искусственным способам образования антивещества. Для его получения используют специальные научные прибору – ускорители частиц, в которых атомы материи разгоняются до около световой скорости (300 000 км/сек). Сталкиваясь, некоторые частицы разрушаются, в результате чего образуются античастицы, из которых можно получить антиматерию. Сложной проблемой является хранение антивещества, так как, соприкоснувшись с обычной материей, антивещество уничтожается. Для этого полученные крупицы антиматерии помещают в вакуум и в , которое удерживает их в подвешенном состоянии и не дает прикоснуться к стенкам хранилища.

Не смотря на всю сложность получения и исследования антивещества, оно может предоставлять для нашей жизни множество преимуществ. Все они основаны на то факте, что при взаимодействии антиматерии с материей выделяется огромное количество энергии. Причем отношение высвобождаемой энергии к массе участвующего вещества не превзойдена ни одним видом или взрывчатого вещества. В результате аннигиляции нет никаких побочных продуктов, только чистая энергия. Поэтому ученые уже сейчас мечтают об ее применении. Например, об на антиматерии с нескончаемым ресурсом. Космические корабли с анигиляторными двигателями смогут пролетать тысячи световых лет на около световой скорости. Военным это даст возможность создать огромную по мощности , гораздо более разрушительную, чем атомная или водородная . Однако всем этим мечтам не суждено осуществится, пока мы не сможем получать недорогое антивещество в промышленных масштабах.

Парадокс «темной материи», непредсказуемые двойные звезды. Одной из самых известных и интригующих загадок, несомненно, является антивещество, состоящее из «вывернутой наизнанку» материи. Открытие данного феномена – одно из наиболее важных достижений физики в прошлом столетии.

До этого момента ученые были уверены, что элементарные частицы – фундаментальные и неизменные кирпичики мироздания, которые не рождаются заново и никогда не исчезают. Эта скучная и незамысловатая картина ушла в прошлое, когда выяснилось, что заряженный отрицательно электрон и его двойник из антимира позитрон при встрече взаимно уничтожаются, порождая кванты энергии. А позже стало очевидным, что элементарные частицы вообще любят превращаться друг в друга, причем самыми причудливыми способами. Открытие антивещества стало началом коренной трансформации представлений о свойствах мироздания.

Антиматерия уже давно стала излюбленной темой научной фантастики. Корабль «Энтерпрайз» из культового «Звездного пути» использует для покорения галактики двигатель на антивеществе. В книге Дэна Брауна «Ангелы и демоны» главный герой спасает Рим от бомбы, созданной на основе этой субстанции. Подчинив неисчерпаемые объемы энергии, которая получается при взаимодействии вещества с антивеществом, человечество обретёт могущество, превосходящее предсказания самых смелых фантастов. Нескольких килограммов антиматерии вполне достаточно для пересечения Галактики.

Но до создания оружия и космических аппаратов еще очень далеко. В настоящее время наука занята теоретическим обоснованием существования антиматерии и исследованием ее свойств, причем ученые используют в своих опытах десятки, в крайнем случае, сотни атомов. Время их жизни исчисляется долями секунд, а стоимость экспериментов – десятками миллионов долларов. Физики уверены, что знания об антивеществе помогут нам лучше понять эволюцию Вселенной и события, происходившие в ней сразу после Большого взрыва.

Что такое антивещество и каковы его свойства?

Антивещество – это особый вид материи, состоящей из античастиц. Они обладают тем же спином и массой, что и обычные протоны и электроны, но отличаются от них знаком электрического и цветового заряда, барионным и лептонным квантовым числом. Говоря простыми словами, если атомы обычного вещества состоят из положительно заряженного ядра и отрицательного электронов, то у антивещества все обстоит наоборот.

При взаимодействии материи и антиматерии происходит аннигиляция с выделением фотонов или других частиц. Энергия, получаемая при этом, огромна: одного грамма антивещества достаточно для взрыва мощностью в несколько килотонн.

Согласно современным представлениям, вещество и антивещество имеют одинаковую структуру, потому что силовое и электромагнитное взаимодействия, определяющие ее, действуют абсолютно идентично как на частицы, так и на их «двойников».

Считается, что антиматерия также может создавать гравитационную силу, но окончательно данный факт еще не доказан. Теоретически гравитация должна действовать на вещество и антивещество одинаково, но это еще предстоит выяснить экспериментальным путем. Сейчас над данным вопросом работают в проектах ALPHA, AEGIS и GBAR.

В конце 2015 года с помощью коллайдера RHIC ученым удалось измерить силу взаимодействия между антипротонами. Оказалось, что она равна аналогичной характеристике протонов.

В настоящее время известны «двойники» практически всех существующих элементарных частиц, кроме так называемых «истинно нейтральных», которые при зарядовом сопряжении переходят в самих себя. К этим частицам относятся:

  • фотон;
  • бозон Хиггса;
  • нейтральный пи-мезон;
  • эта-мезон;
  • гравитрон (пока не обнаруженный).

Антиматерия находится гораздо ближе, чем вы думаете. Источником антивещества, правда, не слишком мощным, являются обычные бананы. Они содержат изотоп калий-40, который распадается с образованием позитрона. Это происходит примерно один раз в 75 минут. Данный элемент также входит в состав человеческого тела, так что каждого из нас можно назвать генератором античастиц.

Из истории вопроса

Впервые допустил мысль о существовании материи «с другим знаком» британский ученый Артур Шустер еще в конце XIX века. Его публикация на эту тему была довольно туманной и не содержала никакой доказательной базы, скорее всего, на гипотезу ученого натолкнуло недавнее открытие электрона. Он же первым ввел в научный обиход термины «антивещество» и «антиатом».

Экспериментально антиэлектрон был получен еще до своего официального открытия. Это удалось сделать советскому физику Дмитрию Скобельцину в 20-е годы прошлого столетия. Он получил странный эффект при исследовании гамма-лучей в камере Вильсона, но объяснить его так и не смог. Теперь мы знаем, что феномен был вызван появлением частицы и античастицы – электрона и позитрона.

В 1930 году известный британский физик Поль Дирак, работая над релятивистским уравнением движения для электрона, предсказал существование новой частицы с той же массой, но противоположным зарядом. В то время ученые знали только одну положительную частицу – протон, однако она была в тысячи раз тяжелее электрона, поэтому интерпретировать данные, полученные Дираком, так и не смогли. Двумя годами позже американец Андерсон обнаружил «двойника» электрона при исследовании излучения из космоса. Он получил название позитрон.

К середине прошлого столетия физики успели неплохо изучить эту античастицу, было разработано несколько способов ее получения. В 50-е годы ученые открыли антипротон и антинейтрон, в 1965 году был получен антидейтрон, а в 1974 году советским исследователям удалось синтезировать антиядра гелия и трития.

В 60-е и 70-е годы античастицы в верхних слоях атмосферы искали с помощью воздушных шаров с научной аппаратурой. Этой группой руководил нобелевский лауреат Луис Альварец. Всего было «поймано» около 40 тыс. частиц, но ни одна из них к антиматерии не имела никакого отношения. В 2002 году аналогичными изысканиями занялись американские и японские физики. Они запустили огромный воздушный шар BESS (объем 1,1 млн м3) на высоту в 23 километра. Но и им за 22 часа эксперимента не удалось обнаружить даже простейших античастиц. Позже аналогичные опыты были проведены в Антарктиде.

В середине 90-х европейским ученым удалось получить атом антиводорода, состоящий из двух частиц: позитрона и антипротона. В последние годы удалось синтезировать значительно большее количество этого элемента, что позволило продвинуться в изучении его свойств.

В 2005 году чувствительный детектор антивещества был установлен на Международной космической станции (МКС).

Антиматерия в условиях космоса

Первооткрыватель позитрона Поль Дирак считал, что во Вселенной существуют целые области, полностью состоящие из антивещества. Об этом он говорил в своей нобелевской лекции. Но пока ученым не удалось обнаружить ничего подобного.

Конечно, в космосе присутствуют античастицы. Они появляются на свет благодаря многим высокоэнергетическим процессам: взрывам сверхновых звезд или горению термоядерного топлива, возникают в облаках плазмы вокруг черных дыр или нейтронных звезд , рождаются при столкновениях высокоэнергетических частиц в межзвездном пространстве. Более того, небольшое количество античастиц постоянно «проливается» дождем на нашу планету. Распад некоторых радионуклидов также сопровождается образованием позитронов. Но все вышеперечисленное – это только античастицы, но не антивещество. До сих пор исследователям не удалось отыскать в космосе даже антигелий, что уж говорить о более тяжелых элементах. Провалом завершились и поиски специфического гамма-излучения, которое сопровождает процесс аннигиляции при столкновении вещества и антивещества.

Судя по имеющимся на сегодня данным, не существует антигалактик, антизвезд или других крупных объектов из антивещества. И это весьма странно: согласно теории Большого взрыва, в момент зарождения нашей Вселенной появилось одинаковое количество вещества и антивещества, и куда делось последнее – непонятно. В настоящее время есть два объяснения этого феномена: либо антивещество исчезло сразу после взрыва, либо оно существует в каких-то отдаленных частях мироздания, и мы его просто его еще не обнаружили. Подобная асимметрия – одна из самых важных неразгаданных задач современной физики.

Существует гипотеза, что на ранних этапах жизни нашей Вселенной количество вещества и антивещества почти совпадало: на каждые миллиард антипротонов и позитронов приходилось ровно столько же их «визави», плюс один «лишний» протон и электрон. Со временем основная часть материи и антиматерии исчезла в процессе аннигиляции, а из избытка возникло все, что нас сегодня окружает. Правда, не совсем понятно, откуда и почему появились «лишние» частицы.

Получение антивещества и трудности этого процесса

В 1995 году ученым удалось создать всего лишь девять атомов антиводорода. Они просуществовали несколько десятков наносекунд, а затем аннигилировали. В 2002 году число частиц исчислялось уже сотнями, а срок их жизни увеличился в несколько раз.

Античастица, как правило, рождается вместе со своим обычным «двойником». Например, для получения позитрон-электронной пары необходимо взаимодействие гамма-кванта с электрическим полем атомного ядра.

Получение антиматерии – весьма хлопотное занятие. Этот процесс происходит в ускорителях, а хранятся античастицы в специальных накопительных кольцах в условиях высокого вакуума. В 2010 году физикам впервые удалось поймать в специальную ловушку «целых» 38 атомов антиводорода и удержать их на протяжении 172 миллисекунд. Для этого ученым пришлось охлаждать 30 тыс. антипротонов до температуры ниже -70 °C и два миллиона позитронов до -230 °C.

На следующий год исследователям удалось значительно улучшить результаты: увеличить срок жизни античастиц до целой тысячи секунд. В дальнейшем планируется выяснить отсутствие или наличие эффекта антигравитации для антиматерии.

Вопрос хранения антиматерии – настоящая головная боль для физиков, ведь антипротоны и позитроны мгновенно аннигилируют при встрече с любыми частицами обычного вещества. Для их удержания ученым пришлось придумывать хитрые приспособления, способные предотвращать катастрофу. Заряженные античастицы хранятся в так называемой ловушке Пеннинга, которая напоминает миниатюрный ускоритель. Ее мощное магнитное и электрическое поле не дает позитронам и антипротонам столкнуться со стенками прибора. Однако подобное устройство не работает с нейтральными объектами, вроде атома антиводорода. Для этого случая была разработана ловушка Иоффе. Удержание антиатомов в ней происходит за счет магнитного поля.

Стоимость антивещества и его энергетическая эффективность

Учитывая сложность получения и хранения антиматерии, не удивительно, что цена ее очень высока. Согласно расчетам НАСА , в 2006 году один миллиграмм позитронов стоил примерно 25 млн долларов. По более ранним данным, грамм антиводорода оцениваелся в 62 трлн долларов. Примерно такие же цифры дают и европейские физики из CERN.

Потенциально антиматерия – это идеальное топливо, сверхэффективное и экологически чистое. Проблема в том, что всей антиматерии, созданной до сих пор людьми, едва хватит, чтобы вскипятить хотя бы чашку кофе.

Синтез одного грамма антивещества требует затраты 25 миллионов миллиардов киловатт-часов энергии, что делает любое практическое применение этой субстанции попросту абсурдным. Возможно, когда-нибудь мы и будем заправлять ею звездолеты, но для этого необходимо придумать более простые и дешевые методы получения и долговременного хранения.

Существующие и перспективные способы применения

В настоящее время антивещество используется в медицине, при проведении позитронно-эмиссионной томографии. Этот метод позволяет получить изображение внутренних органов человека в высоком разрешении. Радиоактивные изотопы наподобие калия-40 соединяют с органическими веществами типа глюкозы и вводят в кровеносную систему пациента. Там они испускают позитроны, которые аннигилируются при встрече с электронами нашего тела. Гамма-излучение, полученное в ходе этого процесса, формирует изображение исследуемого органа или ткани.

Антивещество также изучается в качестве возможного средства против онкологических заболеваний.

Применение антиматерии, несомненно, имеет огромные перспективы. Она сможет привести к настоящему перевороту в энергетике и позволит людям достичь звезд. Любимым коньком авторов фантастических романов являются звездолеты с так называемыми варп-двигателями, позволяющими перемещаться со сверхсветовой скоростью. Сегодня существует несколько математических моделей подобных установок, и большинство из них используют в работе антивещество.

Есть и более реалистичные предложения без сверхсветовых полетов и гиперпространства. Например, предлагается вбрасывать в облако антипротонов капсулу из урана-238 с находящимся внутри дейтерием и гелием-3. Разработчики проекта считают, что взаимодействие данных составляющих приведет к началу термоядерной реакции, продукты которой, будучи направленными магнитным полем в сопло двигателя, обеспечат кораблю значительную тягу.

Для полетов на Марс за один месяц американские инженеры предлагают использовать ядерное деление, инициируемое антипротонами. По их подсчетам, для подобного путешествия необходимо всего лишь 140 нанограммов этих частиц.

Учитывая значительное количество энергии, выделяемой при аннигиляции антивещества, эта субстанция – прекрасный кандидат для начинки бомб и других взрывоопасных предметов. Даже небольшого количества антивещества достаточно для создания боеприпаса, сопоставимого по мощности с ядерной бомбой. Но пока об этом преждевременно беспокоиться, ибо данная технология находится на самом раннем этапе своего развития. Вряд ли подобные проекты смогут осуществиться в ближайшие десятилетия.

Пока же антивещество – в первую очередь, предмет изучения теоретической науки, который очень много может рассказать об устройстве нашего мира. Подобное положение вещей вряд ли изменится пока мы не научимся получать его в промышленных масштабах и надежно сберегать. Только тогда можно будет говорить о практическом использовании этой субстанции.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

АНТИВЕЩЕСТВО, вещество, состоящее из атомов, ядра которых имеют отрицательный электрический заряд и окружены позитронами – электронами с положительным электрическим зарядом. В обычном веществе, из которого построен окружающий нас мир, положительно заряженные ядра окружены отрицательно заряженными электронами. Обычное вещество, чтобы отличать его от антивещества, иногда называют койновеществом (от греч. койнос – обычный). Однако в русской литературе этот термин практически не употребляется. Следует подчеркнуть, что термин «антивещество» не совсем правилен, поскольку антивещество – тоже вещество, его разновидность. Антивещество обладает такими же инерционными свойствами и создает такое же гравитационное притяжение, как и обычное вещество.

Говоря о веществе и антивеществе, логично начать с элементарных (субатомных) частиц. Каждой элементарной частице соответствует античастица; обе имеют почти одинаковые характеристики, за исключением того, что у них противоположный электрический заряд. (Если частица нейтральна, то античастица также нейтральна, но они могут различаться другими характеристиками. В некоторых случаях частица и античастица тождественны друг другу.) Так, электрону – отрицательно заряженной частице – соответствует позитрон, а античастицей протона с положительным зарядом является отрицательно заряженный антипротон. Позитрон был открыт в 1932, а антипротон – в 1955; это были первые из открытых античастиц. Существование античастиц было предсказано в 1928 на основе квантовой механики английским физиком П.Дираком.

При столкновении электрона и позитрона происходит их аннигиляция, т.е. обе частицы исчезают, а из точки их столкновения испускаются два гамма-кванта. Если сталкивающиеся частицы движутся с небольшой скоростью, то энергия каждого гамма-кванта составляет 0,51 МэВ. Эта энергия есть «энергия покоя» электрона, или его масса покоя, выраженная в единицах энергии. Если же сталкивающиеся частицы движутся с большой скоростью, то энергия гамма-квантов будет больше за счет их кинетической энергии. Аннигиляция происходит и при столкновении протона с антипротоном, но процесс в этом случае протекает гораздо сложнее. В качестве промежуточных продуктов взаимодействия рождается ряд короткоживущих частиц; однако спустя несколько микросекунд как окончательные продукты превращений остаются нейтрино, гамма-кванты и небольшое число электрон-позитронных пар. Эти пары в конечном итоге могут аннигилировать, создавая дополнительные гамма-кванты. Аннигиляция происходит и при столкновении антинейтрона с нейтроном или протоном.

Коль скоро существуют античастицы, возникает вопрос, не могут ли из античастиц образовываться антиядра. Ядра атомов обычного вещества состоят из протонов и нейтронов. Самым простым ядром является ядро изотопа обычного водорода 1 H; оно представляет собой отдельный протон. Ядро дейтерия 2 H состоит из одного протона и одного нейтрона; оно называется дейтроном. Еще один пример простого ядра – ядро 3 He, состоящее из двух протонов и одного нейтрона. Антидейтрон, состоящий из антипротона и антинейтрона, был получен в лаборатории в 1966; ядро анти- 3 He, состоящее из двух антипротонов и одного антинейтрона, было впервые получено в 1970.

Согласно современной физике элементарных частиц, при наличии соответствующих технических средств можно было бы получить антиядра всех обычных ядер. Если эти антиядра окружены надлежащим числом позитронов, то они образуют антиатомы. Антиатомы обладали бы почти в точности такими же свойствами, как и обычные атомы; они образовали бы молекулы, из них могли бы формироваться твердые тела, жидкости и газы, в том числе и органические вещества. Например, два антипротона и одно ядро антикислорода вместе с восемью позитронами могли бы образовать молекулу антиводы, сходную с обычной водой H 2 O, каждая молекула которой состоит из двух протонов ядер водорода, одного ядра кислорода и восьми электронов. Современная теория элементарных частиц в состоянии предсказать, что антивода будет замерзать при 0° С, кипеть при 100° С и в остальном вести себя подобно обычной воде. Продолжая такие рассуждения, можно прийти к выводу, что построенный из антивещества антимир был бы чрезвычайно сходен с окружающим нас обычным миром. Этот вывод служит отправной точкой теорий симметричной Вселенной, основанных на предположении, что во Вселенной равное количество обычного вещества и антивещества. Мы живем в той ее части, которая состоит из обычного вещества.

Если привести в соприкосновение два одинаковых куска из веществ противоположного типа, то произойдет аннигиляция электронов с позитронами и ядер с антиядрами. При этом возникнут гамма-кванты, по появлению которых можно судить о происходящем. Поскольку Земля по определению состоит из обычного вещества, в ней нет заметных количеств антивещества, если не считать мизерного числа античастиц, рождающихся на больших ускорителях и в космических лучах. То же самое относится и ко всей Солнечной системе.

Наблюдения показывают, что в пределах нашей Галактики возникает лишь ограниченное количество гамма-излучения. Отсюда ряд исследователей делают вывод об отсутствии в ней сколько-нибудь заметных количеств антивещества. Но этот вывод не бесспорен. В настоящее время нет способа определить, например, состоит ли данная близкая звезда из вещества или антивещества; звезда из антивещества испускает точно такой же спектр, как и обычная звезда. Далее, вполне возможно, что разреженное вещество, заполняющее пространство вокруг звезды и тождественное веществу самой звезды, отделено от областей, заполненных веществом противоположного типа – очень тонкими высокотемпературными «слоями Лейденфроста». Таким образом, можно говорить о «ячеистой» структуре межзвездного и межгалактического пространства, в которой каждая ячейка содержит либо вещество, либо антивещество. Эту гипотезу подкрепляют современные исследования, показывающие, что магнитосфера и гелиосфера (межпланетное пространство) имеют ячеистую структуру. Ячейки с разной намагниченностью и иногда также с разными температурой и плотностью разделены очень тонкими токовыми оболочками. Отсюда следует парадоксальный вывод, что указанные наблюдения не противоречат существованию антивещества даже в пределах нашей Галактики.

Если раньше не было убедительных аргументов в пользу существования антивещества, то теперь успехи рентгеновской и гамма-астрономии изменили положение. Наблюдались явления, связанные с огромным и часто в высшей степени беспорядочным выделением энергии. Вероятнее всего, источником такого энерговыделения была аннигиляция.

Шведский физик О.Клейн разработал космологическую теорию, основанную на гипотезе симметрии между веществом и антивеществом, и пришел к выводу, что процессы аннигиляции играют решающую роль в процессах эволюции Вселенной и формирования структуры галактик.

Становится все более очевидным, что основная альтернативная ей теория – теория «большого взрыва» – серьезно противоречит данным наблюдений и центральное место при решении космологических проблем в ближайшем будущем, скорее всего, займет «симметричная космология».

В физике и химии антиматерия - это вещество, которое состоит из античастиц, то есть из антипротона (протон с отрицательным электрическим зарядом) и из антиэлектрона (электрон с положительным электрическим зарядом). Антипротон и антиэлектрон образуют атом антиматерии подобно тому, как электрон и протон образуют атом водорода.

Общее понятие о материи и антиматерии

Каждый знает ответ на вопрос о том, что такое материя, то есть это субстанция, которая состоит из молекул и атомов. Сами атомы, в свою очередь, состоят из электронов и ядер, образованных протонами и нейтронами. Понимание вопроса, что такое материя, дает возможность понять, что такое антиматерия. Под ней понимается субстанция, составляющие частицы которой имеют противоположный электрический заряд. В случае пары нейтрон-антинейтрон их заряды равны нулю, но магнитные моменты направлены противоположно.

Основное свойство антиматерии - это ее способность к аннигиляции при встрече с обычной материей. В результате контакта этих субстанций масса исчезает и полностью переводится в энергию. Согласно космической теории, во Вселенной существует равное количество материи и антиматерии, этот факт следует из теоретических рассуждений. Однако эти субстанции разделены между собой огромными расстояниями, поскольку любая их встреча приводит к грандиозным космическим феноменам уничтожения материи.

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника "Памела", миссией которого было изучение частиц, испускаемых Солнцем.

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия - это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

В области медицины основное использование антиматерии - это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Сколько стоит грамм антиматерии и где ее хранить?

Производство антиматерии с помощью ускорителей элементарных частиц требует огромных энергетических затрат. Кроме того, антиматерию тяжело хранить, поскольку она при любом контакте с обычным веществом самоуничтожается. Поэтому хранят ее в сильных электромагнитных полях, которые также требуют больших энергетических затрат на их создание и поддержание.

В связи с вышесказанным можно сделать вывод, что антиматерия является самой дорогой субстанцией на земле. Ее грамм оценивается в 62,5 миллиарда долларов США. По другим оценкам, предоставленным ЦЕРН, чтобы создать одну миллиардную грамма антивещества, необходимо затратить несколько сотен миллионов швейцарских франков.

Космос - источник антиматерии

На данном этапе развития технологий искусственное создание антиматерии - это низкоэффективный и затратный способ. Ввиду этого ученые из НАСА планируют собирать магнитными полями антиматерию в поясе Ван Аллена Земли. Этот пояс находится на высоте нескольких сотен километров над поверхностью нашей планеты и имеет толщину в несколько тысяч километров. Эта область космоса содержит большое количество антипротонов, которые образуются в результате реакций элементарных частиц, вызванных столкновениями космических лучей в верхних слоях атмосферы Земли. В количество обычной материи невелико, поэтому антипротоны могут существовать в нем достаточно долгое время.

Другой источник антивещества - это аналогичные радиационные пояса вокруг планет-гигантов Солнечной системы: Юпитера, Сатурна, Нептуна и Урана. Особое внимание ученые уделяют Сатурну, который, по их мнению, должен производить большое количество антипротонов, возникающих в результате взаимодействия заряженных космических частиц с ледяными кольцами планеты.

Также ведутся работы в направлении более экономного хранения антивещества. Так, профессор Масаки Гори (Masaki Hori) заявил о разработанном методе удержания антипротонов с помощью радиочастот, что, по его словам, позволит значительно сократить размеры контейнера для антиматерии.